论文标题

在聚类观察研究中的因果效应的匹配估计量与应用量化海洋保护区对生物多样性的影响的应用

Matching Estimators of Causal Effects in Clustered Observational Studies with Application to Quantifying the Impact of Marine Protected Areas on Biodiversity

论文作者

Cui, Can, Yang, Shu, Reich, Brian J, Gill, David A

论文摘要

海洋保护保护鱼类生物多样性,保护海洋和沿海生态系统,并支持气候韧性和适应。尽管建立海洋保护区(MPA)的重要性,但由于缺乏定量MPA信息,对具有不同保护政策的MPA的有效性的研究受到限制。在本文中,利用全球MPA数据库,我们研究了MPA政策对鱼类生物多样性的因果影响。为了解决这一聚集和混杂的观察性研究所带来的挑战,我们构建了平均治疗效果的匹配估计值,以及用于方差估计的群集加权的引导方法。我们建立了匹配估计器及其方差估计器的理论保证。在我们提出的匹配框架下,我们建议在集群级别和单位级别协变量上进行匹配以实现效率。模拟结果表明,我们的匹配策略最大程度地减少了偏差并实现了名义置信区间的覆盖范围。应用我们提出的匹配方法比较不同的MPA政策表明,无采访政策比保存鱼类生物多样性的多用途政策更有效。

Marine conservation preserves fish biodiversity, protects marine and coastal ecosystems, and supports climate resilience and adaptation. Despite the importance of establishing marine protected areas (MPAs), research on the effectiveness of MPAs with different conservation policies is limited due to the lack of quantitative MPA information. In this paper, leveraging a global MPA database, we investigate the causal impact of MPA policies on fish biodiversity. To address challenges posed by this clustered and confounded observational study, we construct a matching estimator of the average treatment effect and a cluster-weighted bootstrap method for variance estimation. We establish the theoretical guarantees of the matching estimator and its variance estimator. Under our proposed matching framework, we recommend matching on both cluster-level and unit-level covariates to achieve efficiency. The simulation results demonstrate that our matching strategy minimizes the bias and achieves the nominal confidence interval coverage. Applying our proposed matching method to compare different MPA policies reveals that the no-take policy is more effective than the multi-use policy in preserving fish biodiversity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源