论文标题

层次结构少数对象检测:问题,基准和方法

Hierarchical Few-Shot Object Detection: Problem, Benchmark and Method

论文作者

Zhang, Lu, Wang, Yang, Zhou, Jiaogen, Zhang, Chenbo, Zhang, Yinglu, Guan, Jihong, Bian, Yatao, Zhou, Shuigeng

论文摘要

很少有射击对象检测(FSOD)是通过一些示例检测对象。但是,现有的FSOD方法并不考虑现实生活中广泛存在的对象的层次细粒类别结构。例如,在本文中,动物被分类分类为订单,家庭,属和物种等。我们提出并解决了一个称为层次结构的几个射击对象检测(HI-FSOD)的新问题,该问题旨在检测FSOD范式中具有层次类别的对象。为此,一方面,我们构建了第一个大规模和高质量的HI-FSOD基准数据集Hifsod-Bird,其中包含176,350个野生鸟图像,落在1,432个类别中。所有类别均分为4级分类法,包括32个订单,132个家庭,572属和1,432种。另一方面,我们提出了第一个HI-FSOD方法HICLPL,其中开发了层次的对比度学习方法来限制特征空间,以便对象的特征分布与层次分类学一致,并且模型的概括能力得到了增强。同时,概率损失旨在使子节点能够纠正分类学中父节点的分类错误。基准数据集HIFSOD鸟的广泛实验表明,我们的方法Hiclpl优于现有的FSOD方法。

Few-shot object detection (FSOD) is to detect objects with a few examples. However, existing FSOD methods do not consider hierarchical fine-grained category structures of objects that exist widely in real life. For example, animals are taxonomically classified into orders, families, genera and species etc. In this paper, we propose and solve a new problem called hierarchical few-shot object detection (Hi-FSOD), which aims to detect objects with hierarchical categories in the FSOD paradigm. To this end, on the one hand, we build the first large-scale and high-quality Hi-FSOD benchmark dataset HiFSOD-Bird, which contains 176,350 wild-bird images falling to 1,432 categories. All the categories are organized into a 4-level taxonomy, consisting of 32 orders, 132 families, 572 genera and 1,432 species. On the other hand, we propose the first Hi-FSOD method HiCLPL, where a hierarchical contrastive learning approach is developed to constrain the feature space so that the feature distribution of objects is consistent with the hierarchical taxonomy and the model's generalization power is strengthened. Meanwhile, a probabilistic loss is designed to enable the child nodes to correct the classification errors of their parent nodes in the taxonomy. Extensive experiments on the benchmark dataset HiFSOD-Bird show that our method HiCLPL outperforms the existing FSOD methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源