论文标题
及时状态更新的低功率随机访问:基于数据包还是基于连接的?
Low-Power Random Access for Timely Status Update: Packet-based or Connection-based?
论文作者
论文摘要
本文研究了及时的状态更新系统的低功率随机访问协议,其信息新鲜要求,以信息年龄(AOI)衡量。在广泛的网络中,基本挑战是计划大量发射器以访问无线通道的方式,该通道以低网络范围的AOI而在消耗最小的功率的同时访问了低网络的AOI。传统的基于数据包的随机访问协议涉及通过发送整个数据包来争夺通道的发射机。当数据包持续时间很长时,由于数据包碰撞而浪费的时间可能很大。相反,基于连接的随机访问协议在传输数据包之前与接收器建立连接。从新鲜的信息角度来看,应该有一个有利于一种方法而不是另一种方法的条件。我们介绍了基于数据包和基于连接的随机访问协议的平均AOI的比较研究。具体而言,我们将框架插入的Aloha(FSA)视为基于数据包的随机访问和设计请求 - 到达访问(RTA)协议的代表,用于基于连接的随机访问。我们的分析表明,基于数据包或基于连接的协议之间的选择主要取决于更新数据包的有效载荷大小和传输电力预算。特别是,RTA可节省功率并大大减少AOI,尤其是当有效载荷尺寸较大时。总体而言,我们的调查提供了有关低功率及时状态更新系统的随机访问协议的实际设计的见解。
This paper studies low-power random access protocols for timely status update systems with information freshness requirements, measured by age of information (AoI). In an extensive network, a fundamental challenge is scheduling a large number of transmitters to access the wireless channel in a way that achieves low network-wide AoI while consuming minimal power. Conventional packet-based random access protocols involve transmitters contending for the channel by sending their entire data packets. When the packet duration is long, the time wasted due to packet collisions can be significant. In contrast, connection-based random access protocols establish connections with the receiver before transmitting data packets. From an information freshness perspective, there should be conditions that favor one approach over the other. We present a comparative study of the average AoI of packet-based and connection-based random access protocols. Specifically, we consider frame slotted Aloha (FSA) as a representative of packet-based random access and design a request-then-access (RTA) protocol for connection-based random access. Our analyses indicate that the choice between packet-based or connection-based protocols depends mainly on the payload size of update packets and the transmit power budget. In particular, RTA saves power and significantly reduces AoI, especially when the payload size is large. Overall, our investigation offers insights into the practical design of random access protocols for low-power timely status update systems.