论文标题

从运动场和表面正常的视觉迫在眉睫

Visual Looming from Motion Field and Surface Normals

论文作者

Yepes, Juan, Raviv, Daniel

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Looming, traditionally defined as the relative expansion of objects in the observer's retina, is a fundamental visual cue for perception of threat and can be used to accomplish collision free navigation. In this paper we derive novel solutions for obtaining visual looming quantitatively from the 2D motion field resulting from a six-degree-of-freedom motion of an observer relative to a local surface in 3D. We also show the relationship between visual looming and surface normals. We present novel methods to estimate visual looming from spatial derivatives of optical flow without the need for knowing range. Simulation results show that estimations of looming are very close to ground truth looming under some assumptions of surface orientations. In addition, we present results of visual looming using real data from the KITTI dataset. Advantages and limitations of the methods are discussed as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源