论文标题

指导的非局部贴片正则化和基于有效滤波的多曲线融合的反转

Guided Nonlocal Patch Regularization and Efficient Filtering-Based Inversion for Multiband Fusion

论文作者

S., Unni V., Nair, Pravin, Chaudhury, Kunal N.

论文摘要

在多次融合中,具有较高空间和低光谱分辨率的图像与具有低空间但高光谱分辨率的图像结合在一起,以产生具有高空间和光谱分辨率的单个多频率图像。这出现在遥感应用中,例如Pansharpening〜(MS+PAN),高光谱锐化〜(HS+PAN)和HS-MS Fusion〜(HS+MS)。遥感图像是纹理的,具有重复的结构。我们提出了一个基于非局部贴片的图像恢复方法,我们提出了一个凸起的正常化程序,该凸正规化程序(i)考虑了长距离相关性,(ii)惩罚贴片变化,该变化比捕获纹理信息的像素变化更有效,并且(iii)使用较高的空间分辨率图像作为权量计算的指导图像。我们提出了一种有效的ADMM算法,用于优化正规器以及来自成像模型的标准最小二乘损耗函数。我们算法的新颖性是,通过表达贴片变化为过滤操作,并明智地拆分原始变量并引入潜在变量,我们能够使用基于FFT的卷积和软票,从而有效地解决ADMM子问题。就重建质量而言,我们的方法显示出优于最先进和深度学习技术。

In multiband fusion, an image with a high spatial and low spectral resolution is combined with an image with a low spatial but high spectral resolution to produce a single multiband image having high spatial and spectral resolutions. This comes up in remote sensing applications such as pansharpening~(MS+PAN), hyperspectral sharpening~(HS+PAN), and HS-MS fusion~(HS+MS). Remote sensing images are textured and have repetitive structures. Motivated by nonlocal patch-based methods for image restoration, we propose a convex regularizer that (i) takes into account long-distance correlations, (ii) penalizes patch variation, which is more effective than pixel variation for capturing texture information, and (iii) uses the higher spatial resolution image as a guide image for weight computation. We come up with an efficient ADMM algorithm for optimizing the regularizer along with a standard least-squares loss function derived from the imaging model. The novelty of our algorithm is that by expressing patch variation as filtering operations and by judiciously splitting the original variables and introducing latent variables, we are able to solve the ADMM subproblems efficiently using FFT-based convolution and soft-thresholding. As far as the reconstruction quality is concerned, our method is shown to outperform state-of-the-art variational and deep learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源