论文标题
FP扩散:通过执行基本得分Fokker-Planck方程来改善基于得分的扩散模型
FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation
论文作者
论文摘要
基于分数的生成模型(SGM)学习与越来越大的噪声扰动的数据密度相对应的噪声条件分数函数家族。这些受干扰的数据密度通过Fokker-Planck方程(FPE)链接在一起,该方程是一个偏微分方程(PDE),该方程(PDE)负责管理在扩散过程中密度的空间演化。在这项工作中,我们得出了一个称为得分FPE的相应方程,该方程表征了扰动数据密度(即它们的梯度)的噪声条件得分。令人惊讶的是,尽管经验表现令人印象深刻,但我们观察到,通过denoing deno的得分匹配(DSM)所学到的分数未能实现基本的得分FPE,这是地面真相得分的固有自称属性。我们证明,满足得分FPE是可取的,因为它可以提高保守性的可能性和程度。因此,我们建议将DSM目标正规化以实现对分数FPE的满意度,并在各个数据集中显示了该方法的有效性。
Score-based generative models (SGMs) learn a family of noise-conditional score functions corresponding to the data density perturbed with increasingly large amounts of noise. These perturbed data densities are linked together by the Fokker-Planck equation (FPE), a partial differential equation (PDE) governing the spatial-temporal evolution of a density undergoing a diffusion process. In this work, we derive a corresponding equation called the score FPE that characterizes the noise-conditional scores of the perturbed data densities (i.e., their gradients). Surprisingly, despite the impressive empirical performance, we observe that scores learned through denoising score matching (DSM) fail to fulfill the underlying score FPE, which is an inherent self-consistency property of the ground truth score. We prove that satisfying the score FPE is desirable as it improves the likelihood and the degree of conservativity. Hence, we propose to regularize the DSM objective to enforce satisfaction of the score FPE, and we show the effectiveness of this approach across various datasets.