论文标题
ASDOT:使用验证的语言模型的任何镜头数据之间的生成
ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models
论文作者
论文摘要
由于在域(例如金融与体育)或架构(例如,多样化的谓词)方面,数据之间的生成构成了挑战。因此,最近的端到端神经方法需要大量的培训示例才能学会消除歧义和描述数据。但是,现实世界中的数据到文本问题通常会遇到各种数据筛选问题:一个人可能只能访问少数或没有培训示例,并且/或必须依靠其他域或模式中的示例。为了填补这一空白,我们建议通过有效利用任何给定(或否)示例,可以灵活地适用于不同设置的新方法(ASDOT)。 ASDOT由两个步骤组成,即数据歧义和句子融合,这两者都可以通过可选的登录式固定的语言模型(LMS)来解决。在数据歧义阶段,我们采用了提示的GPT-3模型来了解输入数据的可能模棱两可的三元组,并将每个句子转换为含糊不清的简短句子。然后,句子融合阶段使用像T5这样的LM将所有结果句子融合到连贯的段落中作为最终描述。我们在不同方案的各种数据集上进行了广泛的评估,包括零/几/全部/全部摄影设置,以及对看不见的谓词和外域数据的概括。实验结果表明,ASDOT始终在基准方面取得了显着改善,例如,在零照片设置下,飞镖数据集上的30.81 BLEU增益。
Data-to-text generation is challenging due to the great variety of the input data in terms of domains (e.g., finance vs sports) or schemata (e.g., diverse predicates). Recent end-to-end neural methods thus require substantial training examples to learn to disambiguate and describe the data. Yet, real-world data-to-text problems often suffer from various data-scarce issues: one may have access to only a handful of or no training examples, and/or have to rely on examples in a different domain or schema. To fill this gap, we propose Any-Shot Data-to-Text (ASDOT), a new approach flexibly applicable to diverse settings by making efficient use of any given (or no) examples. ASDOT consists of two steps, data disambiguation and sentence fusion, both of which are amenable to be solved with off-the-shelf pretrained language models (LMs) with optional finetuning. In the data disambiguation stage, we employ the prompted GPT-3 model to understand possibly ambiguous triples from the input data and convert each into a short sentence with reduced ambiguity. The sentence fusion stage then uses an LM like T5 to fuse all the resulting sentences into a coherent paragraph as the final description. We evaluate extensively on various datasets in different scenarios, including the zero-/few-/full-shot settings, and generalization to unseen predicates and out-of-domain data. Experimental results show that ASDOT consistently achieves significant improvement over baselines, e.g., a 30.81 BLEU gain on the DART dataset under the zero-shot setting.