论文标题
Fenton类型的minimax问题,用于翻译功能的总和
Fenton type minimax problems for sum of translates functions
论文作者
论文摘要
在P. Fenton之后,我们研究翻译功能的总和$ f(\ MathBf {x},t):= J(t)+\ sum_ {J = 1}^nν_jk(t-x_j)$,其中$ j:[0,1] \ to to {\下划线{\ Mathbb {r}}}}:= \ Mathbb {r} \ cup \ { - \ fty \} $是“足够的非脱位”和上层的“野外函数”,$ k:$ k:[ - 1,1]功能”,在$(-1,0)和$(0,1)$,$ \ MATHBF {X}:=(x_1,\ ldots,x_n)$上均以$ 0 \ le x_1 \ le x_1 \ le \ le x_n \ le x_n \ le 1 $和$ n x_1,$ν_1,\ nivesed $ 0 $ n $ nives。我们分析本地最大值向量$ \ mathbf {m}:=(m_0,m_1,\ ldots,m_n)$,其中$ m_j:= m_j:= m_j(\ mathbf {x}):= \ sup_ {x_j \ le t \ le x_j \ le x____ $ x_0:= 0 $,$ x_ {n+1}:= 1 $;并研究优化(minimax和maximin)问题$ \ inf _ {\ MathBf {x}} \ max_j m_j(\ mathbf {x})$和$ \ sup _ {\ sup _ {\ sup _ {\ mathbf {x}}}主要的结果是这些数量的平等性,规定$ j $是上半连续的,极端配置的存在及其描述为Equioscillation Points $ \ MATHBF {W} $。在以前的论文中,我们获得了单数内核的结果,即当$ k(0)= - \ infty $和field $ j $时,假定为上半连续。在这项工作中,我们摆脱了这些假设,并证明了芬顿的常见概括以及我们先前的结果,在凹内核函数的情况下达到了最大的一般性。
Following P. Fenton, we investigate sum of translates functions $F(\mathbf{x},t):=J(t)+\sum_{j=1}^n ν_j K(t-x_j)$, where $J:[0,1]\to {\underline{\mathbb{R}}}:=\mathbb{R}\cup\{-\infty\}$ is a "sufficiently non-degenerate" and upper-bounded "field function", and $K:[-1,1]\to {\underline{\mathbb{R}}}$ is a fixed "kernel function", concave both on $(-1,0)$ and $(0,1)$, $\mathbf{x}:=(x_1,\ldots,x_n)$ with $0\le x_1\le\dots\le x_n\le 1$, and $ν_1,\dots,ν_n>0$ are fixed. We analyze the behavior of the local maxima vector $\mathbf{m}:=(m_0,m_1,\ldots,m_n)$, where $m_j:=m_j(\mathbf{x}):=\sup_{x_j\le t\le x_{j+1}} F(\mathbf{x},t)$, with $x_0:=0$, $x_{n+1}:=1$; and study the optimization (minimax and maximin) problems $\inf_{\mathbf{x}}\max_j m_j(\mathbf{x})$ and $\sup_{\mathbf{x}}\min_j m_j(\mathbf{x})$. The main result is the equality of these quantities, and provided $J$ is upper semicontinuous, the existence of extremal configurations and their description as equioscillation points $\mathbf{w}$. In our previous papers we obtained results for the case of singular kernels, i.e., when $K(0)=-\infty$ and the field $J$ was assumed to be upper semicontinuous. In this work we get rid of these assumptions and prove common generalizations of Fenton's and our previous results, arriving at the greatest generality in the setting of concave kernel functions.