论文标题
分子机的一般效率关系
A general efficiency relation for molecular machines
论文作者
论文摘要
生活系统有效地使用化学燃料进行工作,处理信息和组装模式,尽管有热噪声。是否源于一般原则或特定的微调尚不清楚。在这里,我将最近的映射从非平衡系统映射到电池抗电路电路,得出了一个分析表达式,以表达由一个或一系列化学潜在差异驱动的任何耗散分子机的效率。该表达式将化学电位与机器的细节脱离,其对效率的影响完全由称为载荷电阻的常数指定。如果化学电位和电阻之间的平衡超过热噪声,则效率通过类似开关的拐点。因此,耗散性化学发动机与缺乏阈值行为的热发动机质量不同。这解释了在单分子实验中观察到的ATP浓度的增加,全或无动的动力蛋白步进。这些结果表明,生物分子能量转导的有效,不是因为生物分子本身的偶像性优化,而是因为化学燃料的浓度保持在细胞内的阈值水平以上。
Living systems efficiently use chemical fuel to do work, process information, and assemble patterns despite thermal noise. Whether high efficiency arises from general principles or specific fine-tuning is unknown. Here, applying a recent mapping from nonequilibrium systems to battery-resistor circuits, I derive an analytic expression for the efficiency of any dissipative molecular machine driven by one or a series of chemical potential differences. This expression disentangles the chemical potential from the machine's details, whose effect on the efficiency is fully specified by a constant called the load resistance. The efficiency passes through a switch-like inflection point if the balance between chemical potential and load resistance exceeds thermal noise. Therefore, dissipative chemical engines qualitatively differ from heat engines, which lack threshold behavior. This explains all-or-none dynein stepping with increasing ATP concentration observed in single-molecule experiments. These results indicate that biomolecular energy transduction is efficient not because of idosyncratic optimization of the biomolecules themselves, but rather because the concentration of chemical fuel is kept above a threshold level within cells.