论文标题

非线性二聚体晶格的离散呼吸器:桥接反连续和连续极限

Discrete Breathers of Nonlinear Dimer Lattices: Bridging the Anti-continuous and Continuous Limits

论文作者

Hofstrand, A., Li, H., Weinstein, M. I.

论文摘要

在这项工作中,我们研究了无线性二聚体振荡器的动力学,这些振荡器是线性耦合的,如SU,Schrieffer和Heeger(SSH)的经典模型中。 SSH模型的单元内和核外耦合的比率定义了独特的$ \ textit {phases} $:拓扑上琐碎的和拓扑的非平凡。我们首先考虑了弱的外部耦合的情况,对应于线性SSH的拓扑琐事状态。对于任何满足非谐振和非依赖性假设的规定隔离二聚体频率,$ω_b$,我们证明有离散的呼吸溶液可用于足够小的核外耦合参数。这些状态为$2π/ω_b$ - 定期定期,并在空间中定位。然后,我们研究了有关此耦合参数的全局延续。我们首先考虑了$ω_b$(播种离散的呼吸频率)位于基础线性无限阵列的(耦合依赖性)声子间隙中。随着耦合的增加,声子间隙的宽度降低并趋向于某个点(线性SSH的拓扑转换)。在此极限中,离散的呼吸器的空间尺度会增长,其振幅降低,表明弱非线性长波状态。渐近分析表明,在这种制度中,离散的呼吸包膜取决于极限包膜方程的矢量间隙孤子。我们使用包络理论来描述与拓扑琐事相对应的SSH偶联参数的离散呼吸器,并通过利用频谱差距很小时利用出现的对称性对称性,拓扑上的非琐事状态。我们的渐近理论与广泛参数的广泛数值模拟表现出极好的一致性。

In this work, we study the dynamics of an infinite array of nonlinear dimer oscillators which are linearly coupled as in the classical model of Su, Schrieffer and Heeger (SSH). The ratio of in-cell and out-of-cell couplings of the SSH model defines distinct $\textit{phases}$: topologically trivial and topologically non-trivial. We first consider the case of weak out-of-cell coupling, corresponding to the topologically trivial regime for linear SSH; for any prescribed isolated dimer frequency, $ω_b$, which satisfies non-resonance and non-degeneracy assumptions, we prove that there are discrete breather solutions for sufficiently small values of the out-of-cell coupling parameter. These states are $2π/ω_b$- periodic in time and exponentially localized in space. We then study the global continuation with respect to this coupling parameter. We first consider the case where $ω_b$, the seeding discrete breather frequency, is in the (coupling dependent) phonon gap of the underlying linear infinite array. As the coupling is increased, the phonon gap decreases in width and tends to a point (at which the topological transition for linear SSH occurs). In this limit, the spatial scale of the discrete breather grows and its amplitude decreases, indicating the weakly nonlinear long wave regime. Asymptotic analysis shows that in this regime the discrete breather envelope is determined by a vector gap soliton of the limiting envelope equations. We use the envelope theory to describe discrete breathers for SSH- coupling parameters corresponding to topologically trivial and, by exploiting an emergent symmetry, topologically nontrivial regimes, when the spectral gap is small. Our asymptotic theory shows excellent agreement with extensive numerical simulations over a wide range of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源