论文标题
几何艾森斯坦系列的惠特克系数
Whittaker coefficients of geometric Eisenstein series
论文作者
论文摘要
几何Langlands预测,Eisenstein系列的Whittaker系数与$ \ check {N} $ - 本地系统的功能之间的同构。我们通过将Eisenstein系列的Whittaker系数解释为分解同源性,然后援引Beilinson和Drinfeld的手性包围代数的手性同源性。
Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of $\check{N}$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld's formula for chiral homology of a chiral enveloping algebra.