论文标题

在空间解决的转录组学中深度学习:全面的技术观点

Deep Learning in Spatially Resolved Transcriptomics: A Comprehensive Technical View

论文作者

Nasab, Roxana Zahedi, Ghamsari, Mohammad Reza Eftekhariyan, Argha, Ahmadreza, Macphillamy, Callum, Beheshti, Amin, Alizadehsani, Roohallah, Lovell, Nigel H., Lotfollahi, Mohammad, Alinejad-Rokny, Hamid

论文摘要

空间分辨的转录组学(SRT)通过各种技术迅速发展,使科学家能够在平行单细胞分辨率下研究形态学环境和基因表达分析。 SRT数据是复杂且多模式的,包括基因表达矩阵,空间信息以及通常高分辨率的组织学图像。由于这种复杂性和多模式,需要精确分析SRT数据。由于SRT数据集的复杂性质,该领域中的大多数努力都用于利用传统的机器学习和统计方法,表现出次优的结果。为了解决这些缺点,研究人员最近采用了深度学习算法,包括主要用于空间聚类,空间可变基因识别和对齐方式的各种最新方法。尽管在开发基于深度学习的SRT数据分析模型中取得了巨大进展,但仍需要进一步的改进来创建更多具有生物学意识的模型,以考虑诸如系统发育感知的聚类或小型组织学图像贴片的分析等方面。此外,在使用深度学习方法分析SRT数据时,仍然需要采取批处理效应去除,归一化和处理过度分散和零通胀模式的策略。在本文中,我们提供了这些深度学习方法的全面概述,包括它们的优势和局限性。我们还重点介绍了该领域的新边界,当前的挑战,局限性和开放性问题。此外,我们还提供了所有可用SRT数据库的全面列表,这些数据库可作为未来研究的广泛资源。

Spatially resolved transcriptomics (SRT) has evolved rapidly through various technologies, enabling scientists to investigate both morphological contexts and gene expression profiling at single-cell resolution in parallel. SRT data are complex and multi-modal, comprising gene expression matrices, spatial information, and often high-resolution histology images. Because of this complexity and multi-modality, sophisticated computational algorithms are required to accurately analyze SRT data. Most efforts in this domain have been made to utilize conventional machine learning and statistical approaches, exhibiting sub-optimal results due to the complicated nature of SRT datasets. To address these shortcomings, researchers have recently employed deep learning algorithms including various state-of-the-art methods mainly in spatial clustering, spatially variable gene identification, and alignment. While great progress has been made in developing deep learning-based models for SRT data analysis, further improvement is still needed to create more biologically aware models that consider aspects such as phylogeny-aware clustering or the analysis of small histology image patches. Additionally, strategies for batch effect removal, normalization, and handling overdispersion and zero inflation patterns of gene expression are still needed in the analysis of SRT data using deep learning methods. In this paper, we provide a comprehensive overview of these deep learning methods, including their strengths and limitations. We also highlight new frontiers, current challenges, limitations, and open questions in this field. Also, we provide a comprehensive list of all available SRT databases that can be used as an extensive resource for future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源