论文标题
XPROMPT:探索及时调整的极端
XPrompt: Exploring the Extreme of Prompt Tuning
论文作者
论文摘要
及时调整软件提示,以调节冷冻预训练的语言模型(PLM),以以参数有效的方式执行下游任务。尽管随着模型量表的增加,及时调整逐渐达到了微调的性能水平,但对于中等和小尺度的模型(通常小于11B参数),及时调整和微调之间仍然存在较大的性能差距。在本文中,我们从经验上表明,受过训练的提示令牌可能会对下游任务产生负面影响,从而降低其性能。为了弥合差距,我们提出了一个新颖的及时调整模型,该模型在彩票票证假设方面具有极小规模(XPROMPT)。具体而言,Xprompt通过层次结构化的修剪消除了不同粒度水平的负提示令牌,并具有竞争性能,从而产生了更具参数效率的提示。全面的实验是在超级工作任务上进行的,并且广泛的结果表明,Xprompt能够在较小的型号下缩小性能差距。
Prompt tuning learns soft prompts to condition frozen Pre-trained Language Models (PLMs) for performing downstream tasks in a parameter-efficient manner. While prompt tuning has gradually reached the performance level of fine-tuning as the model scale increases, there is still a large performance gap between prompt tuning and fine-tuning for models of moderate and small scales (typically less than 11B parameters). In this paper, we empirically show that the trained prompt tokens can have a negative impact on a downstream task and thus degrade its performance. To bridge the gap, we propose a novel Prompt tuning model with an eXtremely small scale (XPrompt) under the regime of lottery tickets hypothesis. Specifically, XPrompt eliminates the negative prompt tokens at different granularity levels through a hierarchical structured pruning, yielding a more parameter-efficient prompt yet with a competitive performance. Comprehensive experiments are carried out on SuperGLUE tasks, and the extensive results indicate that XPrompt is able to close the performance gap at smaller model scales.