论文标题
密度功能理论中响应属性计算的数值稳定性和效率
Numerical stability and efficiency of response property calculations in density functional theory
论文作者
论文摘要
密度功能理论中的响应计算旨在计算外部扰动引起的地下密度变化。在有限温度下,这些通常是通过计算轨道变化来执行的,轨道的变化涉及潜在条件不良的线性系统(Sternheimer方程)的迭代解决方案。由于轨道的许多变化产生相同的密度矩阵变化,因此涉及一定的仪表。采用数值分析的观点,我们介绍了共同框架中文献中提出的各种规格选择,并研究其稳定性。除了现有方法之外,我们提出了一种新方法,基于Schur补充使用自稳态场计算的额外轨道的补充,以提高Sternheimer方程的迭代解决方案的稳定性和效率。我们展示了这种策略在非平凡的实践兴趣实例上的成功,例如Heusler Transition Metal Alloy化合物,在该化合物中,已经实现了所需的成本确定的Hamiltonian应用程序数量约40%。
Response calculations in density functional theory aim at computing the change in ground-state density induced by an external perturbation. At finite temperature these are usually performed by computing variations of orbitals, which involve the iterative solution of potentially badly-conditioned linear systems, the Sternheimer equations. Since many sets of variations of orbitals yield the same variation of density matrix this involves a choice of gauge. Taking a numerical analysis point of view we present the various gauge choices proposed in the literature in a common framework and study their stability. Beyond existing methods we propose a new approach, based on a Schur complement using extra orbitals from the self-consistent-field calculations, to improve the stability and efficiency of the iterative solution of Sternheimer equations. We show the success of this strategy on nontrivial examples of practical interest, such as Heusler transition metal alloy compounds, where savings of around 40% in the number of required cost-determining Hamiltonian applications have been achieved.