论文标题
使用计算模拟的无序和有序蛋白质折叠动力学的比较研究
A Comparative Study of Disordered and Ordered Protein Folding Dynamics Using Computational Simulation
论文作者
论文摘要
一段时间以来,折叠蛋白动力学一直是一个引起人们兴趣的领域,尤其是考虑到对生物物理学领域的关注越来越大。由于折叠动力学发生在如此短的时间尺度上,因此开发了用于更多“静态”蛋白质事件的经验技术,例如X射线晶体学,核磁共振和绿色荧光蛋白(GFP)标记,并不适用。取而代之的是,必须使用计算方法来模拟这些短暂的生命但高度动态的事件。一种被证明可以对蛋白质折叠动力学的宝贵见解的计算方法是分子动力学模拟(MD模拟)。这种仿真方法在高度计算上是要求的,但在其蛋白质物理行为的建模方面高度准确。除MD模拟外,通常在这些蛋白质事件的背景下,模拟非常适用。例如,简单的Gillespie算法,即几乎任何个人计算机上可以执行的计算技术,鉴于其计算简单性,可以在蛋白质动力学上进行强大的视图。本文将比较两个模拟的结果,一个对无序的MD模拟,六分配,致癌蛋白碎片以及基于吉莱斯皮算法的模拟,对有序的折叠蛋白进行了模拟:数学上相同的吉莱斯皮算法算法量序列的数学上相同的性质,以预测奇特的定型性化合物,以预测奇特的定型性化合物,以实现危险的定型动态学,以实现危险的定型动力学,以构成动力学的动态学,这些动态构成了动态的动态,这些动态构成了动态的动态学。时间序列将显示用于分析无序和有序蛋白质系统的计算能力模拟。
Folding protein dynamics has been an area of high interest for quite some time, especially given the increased focus on the field of Biophysics. Because folding dynamics occur on such short time scales, empirical techniques developed for more "static" protein events, such as X-ray crystallography, nuclear magnetic resonance, and green fluorescent protein (GFP) labelling, aren't as applicable. Instead, computational methods must often be used to simulate these short lived yet highly dynamic events. One such computational method that is proven to provide much valuable insight into protein folding dynamics is Molecular Dynamics Simulation (MD Simulation). This simulation method is both highly computationally demanding, yet highly accurate in its modelling of a proteins physical behaviour. Besides MD Simulation, simulations in general are quite applicable in the context of these protein events. For example, the simple Gillespie algorithm, a computational technique which can be executed on almost any personal computer, provides quite the robust view into protein dynamics given its computational simplicity. This paper will compare the results of two simulations, an MD simulation of a disordered, six-residue, carcinogenic protein fragment, and a Gillespie algorithm based simulation of an ordered folding protein: the mathematically identical nature of the Gillespie algorithm time series of the asymptotically stochastic hyperbolic tangent dynamics for the wild type predicting the exact behaviour of the carcinogenic protein system time series will show the computational power simulations provide for analyzing both disordered and ordered protein systems.