论文标题

光学时间域调查显示的二进制中最近的中子星候选人

The Nearest Neutron Star Candidate in a Binary Revealed by Optical Time-domain Surveys

论文作者

Zheng, Ling-Lin, Sun, Mouyuan, Gu, Wei-Min, Yi, Tuan, Zhang, Zhi-Xiang, Wang, Pei, Wang, Junfeng, Wu, Jianfeng, Weng, Shan-Shan, Wang, Song, Qi, Sen-Yu, Zhang, Jia, Li, Chun-Qian, Shi, Jian-Rong, Shao, Yong, Li, Xiang-Dong, Fu, Jin-Bo, Yang, Fan, Bai, Zhongrui, Bai, Yu, Zhang, Haotong, Liu, Jifeng

论文摘要

在过去的几百万年中,近地(在$ \ sim 100 $ PC之内)超新星爆炸会导致地球上全球放射性元素(例如$^{60} $ fe)的全球沉积。这种超新星的残余物太老了,无法轻松识别。因此,搜索超新星的产物,搜索拥有百万年前的近地中子星或黑洞的近地。但是,即使在我们的太阳能社区不是无线电脉冲星或X射线/$γ$ -Ray -Ray发射器,也可以在我们的太阳能街区找到一些挑战。在这里,我们报告了在一个独立的单线光谱二进制二进制lamost J235456.73+335625.9(以下简称J2354)中,发现了最接近的($ 127.7 \ pm 0.3 $ PC)中子星候选人之一。利用时间分辨的地面光谱和空间光度法,我们发现J2354用$ M _ {\ Mathrm {Inv}} $托管一个看不见的紧凑对象,为$ 1.4 \ sim 1.6 \ m _ {\ m _ {\ odot} $。后续快速紫外线(UV)和X射线观测表明,紫外线和X射线发射是由可见的恒星而不是紧凑的物体产生的。因此,J2354可能拥有中子星,而不是热的超级白矮人。两个小时非常敏感的无线电随访观测值,带有五百米的光圈球形射电望远镜,无法在$6σ$通量上限$ 12.5 \μ\ mathrm {jy} $上揭示任何脉动无线电信号。因此,只能通过我们的时间分辨观测来揭示J2354中的中子星候选人。有趣的是,正如Gaia Kinematics所揭示的那样,J2354和我们的地球之间的距离可能与$ 2.5 $ 2.5 $ MYRS的$ \ sim 50 $ PC接近。我们的发现展示了一种有前途的方式,可以通过探索光学时域来揭示二进制文件中隐藏的近地中子星星,从而促进对我们太阳能社区中金属增强历史的理解。

The near-Earth (within $\sim 100$ pc) supernova explosions in the past several million years can cause the global deposition of radioactive elements (e.g., $^{60}$Fe) on Earth. The remnants of such supernovae are too old to be easily identified. It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes, the products of supernovae. However, neutron stars and black holes are challenging to find even in our Solar neighbourhood if they are not radio pulsars or X-ray/$γ$-ray emitters. Here we report the discovery of one of the nearest ($127.7 \pm 0.3$ pc) neutron star candidates in a detached single-lined spectroscopic binary LAMOST J235456.73+335625.9 (hereafter J2354). Utilizing the time-resolved ground-based spectroscopy and space photometry, we find that J2354 hosts an unseen compact object with $M_{\mathrm{inv}}$ being $1.4 \sim 1.6\ M_{\odot}$. The follow-up Swift ultraviolet (UV) and X-ray observations suggest that the UV and X-ray emission is produced by the visible star rather than the compact object. Hence, J2354 probably harbours a neutron star rather than a hot ultramassive white dwarf. Two-hour exceptionally sensitive radio follow-up observations with Five-hundred-meter Aperture Spherical radio Telescope fail to reveal any pulsating radio signals at the $6σ$ flux upper limit of $12.5\ μ\mathrm{Jy}$. Therefore, the neutron star candidate in J2354 can only be revealed via our time-resolved observations. Interestingly, the distance between J2354 and our Earth can be as close as $\sim 50$ pc around $2.5$ Myrs ago, as revealed by the Gaia kinematics. Our discovery demonstrates a promising way to unveil the hidden near-Earth neutron stars in binaries by exploring the optical time domain, thereby facilitating understanding of the metal-enrichment history in our Solar neighbourhood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源