论文标题

欧几里得神经网络中的分层学习

Hierarchical Learning in Euclidean Neural Networks

论文作者

Rackers, Joshua A., Rao, Pranav

论文摘要

近年来,在3D学习应用程序中,模棱两可的机器学习方法在3D学习应用方面取得了广泛的成功。这些模型明确建立在欧几里得空间的反思,翻译和旋转对称性中,并促进了物理科学中一系列应用的准确性和数据效率的巨大进步。对模型模型的一个杰出问题是,为什么它们在这些应用中取得了超过预期的进步。为了探究这个问题,我们检查了欧几里得神经网络(\ texttt {e3nn})中高阶(非量表)特征的作用。我们专注于先前研究的\ texttt {e3nn}的应用到电子密度预测的问题,该预测允许多种非量表输出,并检查输出的性质(标量$ l = 0 $,vector $ l = 1 $,还是更高的订单$ l> 1 $)与非scalar隐藏范围的效率相关。此外,我们研究了整个训练中非量表功能的行为,发现自然的特征层次结构$ l $,让人联想到多极扩展。我们的目标是最终为{\ tt e3nn}网络的域应用程序的设计原理和选择提供信息。

Equivariant machine learning methods have shown wide success at 3D learning applications in recent years. These models explicitly build in the reflection, translation and rotation symmetries of Euclidean space and have facilitated large advances in accuracy and data efficiency for a range of applications in the physical sciences. An outstanding question for equivariant models is why they achieve such larger-than-expected advances in these applications. To probe this question, we examine the role of higher order (non-scalar) features in Euclidean Neural Networks (\texttt{e3nn}). We focus on the previously studied application of \texttt{e3nn} to the problem of electron density prediction, which allows for a variety of non-scalar outputs, and examine whether the nature of the output (scalar $l=0$, vector $l=1$, or higher order $l>1$) is relevant to the effectiveness of non-scalar hidden features in the network. Further, we examine the behavior of non-scalar features throughout training, finding a natural hierarchy of features by $l$, reminiscent of a multipole expansion. We aim for our work to ultimately inform design principles and choices of domain applications for {\tt e3nn} networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源