论文标题
使用来自黑色素瘤一致性回归的全部幻灯片图像表示
Using Whole Slide Image Representations from Self-Supervised Contrastive Learning for Melanoma Concordance Regression
论文作者
论文摘要
尽管黑色素瘤的发生比其他几种皮肤癌更少,但如果遗漏诊断,患者的长期存活率极低。区分黑色素瘤和良性黑色素细胞病变时,病理学家之间的不一致率很高。向医疗保健提供者提供潜在一致信息的工具,可以帮助诊断,预后和治疗性决策为挑战性黑素瘤病例提供信息。我们提出了一个黑色素瘤一致性回归深度学习模型,能够预测数字化整个幻灯片图像(WSIS)的侵入性黑色素瘤或黑色素瘤的一致性速率。使用对比度学习方法Simclr以一种自我监督的方式学习了与黑色素瘤一致性相对应的显着特征。我们培训了一个SIMCLR特征提取器,该特征提取器具有83,356个WSI瓷砖,这些瓷砖从源自四个不同病理实验室的10,895个标本中随机采样。我们在990个标本上训练了一个单独的黑色素瘤一致性回归模型,并具有来自三个病理实验室的可用一致性地面真实注释,并在211个标本上测试了该模型。我们在测试集上达到了一个均方根误差(RMSE)为0.28 +/- 0.01。我们还研究了使用预测的一致性率作为恶性分类器的性能,并在测试集上分别达到了0.85 +/- 0.05和0.61 +/- 0.06的精确度和召回率。这些结果是建立人工智能(AI)系统的重要第一步,能够预测咨询专家小组并根据专家对特定诊断达成一致的程度的分数的结果。这样的系统可用于建议其他测试或其他动作,例如订购其他污渍或基因检测。
Although melanoma occurs more rarely than several other skin cancers, patients' long term survival rate is extremely low if the diagnosis is missed. Diagnosis is complicated by a high discordance rate among pathologists when distinguishing between melanoma and benign melanocytic lesions. A tool that provides potential concordance information to healthcare providers could help inform diagnostic, prognostic, and therapeutic decision-making for challenging melanoma cases. We present a melanoma concordance regression deep learning model capable of predicting the concordance rate of invasive melanoma or melanoma in-situ from digitized Whole Slide Images (WSIs). The salient features corresponding to melanoma concordance were learned in a self-supervised manner with the contrastive learning method, SimCLR. We trained a SimCLR feature extractor with 83,356 WSI tiles randomly sampled from 10,895 specimens originating from four distinct pathology labs. We trained a separate melanoma concordance regression model on 990 specimens with available concordance ground truth annotations from three pathology labs and tested the model on 211 specimens. We achieved a Root Mean Squared Error (RMSE) of 0.28 +/- 0.01 on the test set. We also investigated the performance of using the predicted concordance rate as a malignancy classifier, and achieved a precision and recall of 0.85 +/- 0.05 and 0.61 +/- 0.06, respectively, on the test set. These results are an important first step for building an artificial intelligence (AI) system capable of predicting the results of consulting a panel of experts and delivering a score based on the degree to which the experts would agree on a particular diagnosis. Such a system could be used to suggest additional testing or other action such as ordering additional stains or genetic tests.