论文标题

Navier-Stokes方程中的空间渐近扩展

Spatial asymptotic expansions in the Navier-Stokes equation

论文作者

McOwen, R., Topalov, P.

论文摘要

我们证明,在$ \ mathbb {r}^d $中的粘性不可压缩的流体的Navier-Stokes方程在函数的空间中,允许以$ | x | \ to \ to \ f to的空间渐近扩展为$ | x | \ to \ to \ infty $。该解决方案在分析上取决于初始数据和时间,因此对于任何$ 0 <\ vartheta <π/2 $,它都可以在$ \ Mathbb {c} $中以$ 2 \ vartheta $在零的零态扇区的时间扩展到圆锥扇区。我们通过渐近部件讨论溶液对溶液的近似。

We prove that the Navier-Stokes equation for a viscous incompressible fluid in $\mathbb{R}^d$ is locally well-posed in spaces of functions allowing spatial asymptotic expansions with log terms as $|x|\to\infty$ of any a priori given order. The solution depends analytically on the initial data and time so that for any $0<\vartheta<π/2$ it can be holomorphically extended in time to a conic sector in $\mathbb{C}$ with angle $2\vartheta$ at zero. We discuss the approximation of solutions by their asymptotic parts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源