论文标题
泥!使用机器人预触时感测的液体光谱
SLURP! Spectroscopy of Liquids Using Robot Pre-Touch Sensing
论文作者
论文摘要
液体和颗粒状培养基在整个人类环境中普遍存在。他们自由流动的性质使人们将他们限制为容器。我们这样做的是数千种不同类型的容器,这些容器由不同尺寸,形状和颜色的不同材料制成。在这项工作中,我们为机器人提供了一种最新的感应技术,以感知未知容器内的液体。我们这样做是通过将可见的近红外(VNIR)反射光谱集成到机器人的最终效应器中。我们引入了一个分层模型,用于从两个集成光谱仪中推断容器的材料类别和内部内容的材料类别。为了训练这些推论模型,我们从180多种不同的容器和液体组合中捕获并开源了光谱测量的数据集。我们的技术证明了在13个不同容器中识别包含13种不同液体和颗粒培养基的精度超过85%。光谱读数的敏感性使我们的模型还可以以96%的精度识别容器本身的材料组成。总体而言,VNIR光谱学提出了一种有前途的方法,可以使家用机器人具有通用的能力来推断容器内部的液体,而无需打开或操纵容器。
Liquids and granular media are pervasive throughout human environments. Their free-flowing nature causes people to constrain them into containers. We do so with thousands of different types of containers made out of different materials with varying sizes, shapes, and colors. In this work, we present a state-of-the-art sensing technique for robots to perceive what liquid is inside of an unknown container. We do so by integrating Visible to Near Infrared (VNIR) reflectance spectroscopy into a robot's end effector. We introduce a hierarchical model for inferring the material classes of both containers and internal contents given spectral measurements from two integrated spectrometers. To train these inference models, we capture and open source a dataset of spectral measurements from over 180 different combinations of containers and liquids. Our technique demonstrates over 85% accuracy in identifying 13 different liquids and granular media contained within 13 different containers. The sensitivity of our spectral readings allow our model to also identify the material composition of the containers themselves with 96% accuracy. Overall, VNIR spectroscopy presents a promising method to give household robots a general-purpose ability to infer the liquids inside of containers, without needing to open or manipulate the containers.