论文标题

多项分数线性方程通过毛细管建模氧

Multi-term fractional linear equations modeling oxygen subdiffusion through capillaries

论文作者

Pata, Vittorino, Siryk, Sergii, Vasylyeva, Nataliya

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For $0<ν_2<ν_1\leq 1$, we analyze a linear integro-differential equation on the space-time cylinder $Ω\times(0,T)$ in the unknown $u=u(x,t)$ $$\mathbf{D}_{t}^{ν_1}(\varrho_{1}u)-\mathbf{D}_{t}^{ν_2}(\varrho_2 u)-\mathcal{L}_{1}u-\mathcal{K}*\mathcal{L}_{2}u =f$$ where $\mathbf{D}_{t}^{ν_i}$ are the Caputo fractional derivatives, $\varrho_i=\varrho_i(x,t)$ with $\varrho_1\geq μ_0>0$, $\mathcal{L}_{i}$ are uniform elliptic operators with time-dependent smooth coefficients, $\mathcal{K}$ is a summable convolution kernel, and $f$ is an external force. Particular cases of this equation are the recently proposed advanced models of oxygen transport through capillaries. Under suitable conditions on the given data, the global classical solvability of the associated initial-boundary value problems is addressed. To this end, a special technique is needed, adapting the concept of a regularizer from the theory of parabolic equations. This allows us to remove the usual assumption about the nonnegativity of the kernel representing fractional derivatives. The problem is also investigated from the numerical point of view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源