论文标题

使用平滑度正则化的线性预码多载波系统中双分散通道的估计

Estimation of Doubly-Dispersive Channels in Linearly Precoded Multicarrier Systems Using Smoothness Regularization

论文作者

Pfadler, Andreas, Szollmann, Tom, Jung, Peter, Stanczak, Slawomir

论文摘要

在本文中,我们提出了一种新的通道估计方案,用于使用平滑度正则脉冲多载体系统,以实现超可靠的低延迟通信(URLLC)。它可以应用于具有或没有线性预编码的任何多载波系统,以估计具有挑战性的双分散通道。最近提出的使用正交预码的调制方案是正交时频和空间调制(OTFS)。在OTF中,将飞行员和数据符号放置在延迟多普勒(DD)域中,并将其预编码为时频(TF)域。一方面,这种正交的预编码提高了可实现的通道估计精度,并使接收器的TF多样性高。另一方面,它引入了泄漏效应,当试点与数据共同编码时,需要广泛的泄漏抑制。为了避免这种情况,我们建议仅预言数据符号,将飞行员符号放置而不预编码到TF域中,并通过插入来自飞行员样本的平滑函数来估计通道系数。此外,我们提出了一个试点方案,可以平稳控制飞行员符号的数量和位置。我们的数值结果表明,与使用离散DD域中的Wiener滤波相比,所提出的方案与标准估计器相比提供了准确的信号估计,并减少了信号传导开销。

In this paper, we propose a novel channel estimation scheme for pulse-shaped multicarrier systems using smoothness regularization for ultra-reliable low-latency communication (URLLC). It can be applied to any multicarrier system with or without linear precoding to estimate challenging doubly-dispersive channels. A recently proposed modulation scheme using orthogonal precoding is orthogonal time-frequency and space modulation (OTFS). In OTFS, pilot and data symbols are placed in delay-Doppler (DD) domain and are jointly precoded to the time-frequency (TF) domain. On the one hand, such orthogonal precoding increases the achievable channel estimation accuracy and enables high TF diversity at the receiver. On the other hand, it introduces leakage effects which requires extensive leakage suppression when the piloting is jointly precoded with the data. To avoid this, we propose to precode the data symbols only, place pilot symbols without precoding into the TF domain, and estimate the channel coefficients by interpolating smooth functions from the pilot samples. Furthermore, we present a piloting scheme enabling a smooth control of the number and position of the pilot symbols. Our numerical results suggest that the proposed scheme provides accurate channel estimation with reduced signaling overhead compared to standard estimators using Wiener filtering in the discrete DD domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源