论文标题

二元最佳LCD尺寸的最小距离完全确定

Minimum distances of binary optimal LCD codes of dimension five are completely determined

论文作者

Liu, Yang, Li, Ruihu, Fu, Qiang, Song, Hao

论文摘要

令$ t \ in \ {2,8,10,12,14,16,18 \} $和$ n = 31s+t \ geq 14 $,$ d_ {a}(n,5)$和$ d_ {l}(l}(l}(n,5)$ be barional $ [n,5] $ [n,5] $ courteal lineal cormores and counteal cormores and courteal cormers and countal courte courtecry corment cormers and courtal corment courtecry courte cordare cormeral cormers lc countally dual(lc)我们表明$ [n,5,d_ {a}(n,5)] $最佳线性代码不是LCD代码,那里有一个$ [n,5,d_ {l}(n,5)(n,5)] = [n,5,5,d_ {a}(a a}(n,5)(n,5) $ [n,5,d_ {l}(n,5)] $ optimal lcd代码具有$ d_ {l}(n,5)= 16s+6 = d_ {a}(n,5)-2 $ for $ t = 16 $。结合最佳LCD代码上的已知结果,所有$ [n,5] $ LCD代码的$ d_ {l}(n,5)$已完全确定。

Let $t \in \{2,8,10,12,14,16,18\}$ and $n=31s+t\geq 14$, $d_{a}(n,5)$ and $d_{l}(n,5)$ be distances of binary $[n,5]$ optimal linear codes and optimal linear complementary dual (LCD) codes, respectively. We show that an $[n,5,d_{a}(n,5)]$ optimal linear code is not an LCD code, there is an $[n,5,d_{l}(n,5)]=[n,5,d_{a}(n,5)-1]$ optimal LCD code if $t\neq 16$, and an optimal $[n,5,d_{l}(n,5)]$ optimal LCD code has $d_{l}(n,5)=16s+6=d_{a}(n,5)-2$ for $t=16$. Combined with known results on optimal LCD code, $d_{l}(n,5)$ of all $[n,5]$ LCD codes are completely determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源