论文标题
经典和量子重力的修改不确定性关系
Modified uncertainty relations from classical and quantum gravity
论文作者
论文摘要
在阿尔伯特·爱因斯坦(Albert Einstein)认识到重力理论的必要性之后的一百年中,人们对此的搜索仍然是一项持续的努力。然而,该领域仍然迅速发展,这是由于量子重力现象学的最近兴起所表现出的,这是由于实验精度的巨大激增所支持的。特别是,在广义不确定性原则计划(GUP)中扎根的最小范式在重要性上稳步增长。本论文旨在在修改的不确定性关系之间建立联系,从变形的规范换向器和弯曲空间得出 - 具体是GUP和非平凡动量空间以及相关的扩展不确定性原理(EUP)和弯曲的位置空间。在这种情况下,我们得出了一种新型的EUP,该EUP与大地球的半径相关,被认为可以约束基础希尔伯特空间中的波函数,并与动量操作员的标准偏差。根据3+1分解,该结果逐渐概括为弯曲时空中的相对论粒子。从某种意义上说,追求反路线,我们发现在非欧国人动量空间上产生的GUP和量子动力学之间的理论之间有明确的对应关系。量词上,坐标非交构度转化为双重描述中的动量空间曲率,从而可以从文献中类似地传递约束。最后,我们找到了量子力学的公式,该公式在任意弯曲的cotangent束上证明是一致的。沿着这些线路,我们表明,谐波振荡器不能用作区分位置和动量空间曲率的一种手段,从而在弯曲空间的背景下提供了天生互惠的明确实例。
A good hundred years after the necessity for a quantum theory of gravity was acknowledged by Albert Einstein, the search for it continues to be an ongoing endeavour. Nevertheless, the field still evolves rapidly as manifested by the recent rise of quantum gravity phenomenology supported by an enormous surge in experimental precision. In particular, the minimum length paradigm ingrained in the program of generalized uncertainty principles (GUPs) is steadily growing in importance. The present thesis is aimed at establishing a link between modified uncertainty relations, derived from deformed canonical commutators, and curved spaces - specifically, GUPs and nontrivial momentum space as well as the related extended uncertainty principles (EUPs) and curved position space. In that vein, we derive a new kind of EUP relating the radius of geodesic balls, assumed to constrain the wave functions in the underlying Hilbert space, with the standard deviation of the momentum operator. This result is gradually generalized to relativistic particles in curved spacetime in accordance with the 3+1 decomposition. In a sense pursuing the inverse route, we find an explicit correspondence between theories yielding a GUP and quantum dynamics set on non-Euclidean momentum space. Quantitatively, the coordinate noncommutativity translates to momentum space curvature in the dual description, allowing for an analogous transfer of constraints from the literature. Finally, we find a formulation of quantum mechanics which proves consistent on the arbitrarily curved cotangent bundle. Along these lines, we show that the harmonic oscillator can not be used as a means to distinguish between curvature in position and momentum space, thereby providing an explicit instantiation of Born reciprocity in the context of curved spaces.