论文标题

部分可观测时空混沌系统的无模型预测

Enhancing Branch-and-Bound for Multi-Objective 0-1 Programming

论文作者

Forget, Nicolas, Parragh, Sophie N.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the bi-objective branch-and-bound literature, a key ingredient is objective branching, i.e. to create smaller and disjoint sub-problems in the objective space, obtained from the partial dominance of the lower bound set by the upper bound set. When considering three or more objective functions, however, applying objective branching becomes more complex, and its benefit has so far been unclear. In this paper, we investigate several ingredients which allow to better exploit objective branching in a multi-objective setting. We extend the idea of probing to multiple objectives, enhance it in several ways, and show that when coupled with objective branching, it results in significant speed-ups in terms of CPU times. We also investigate cut generation based on the objective branching constraints. Besides, we generalize the best-bound idea for node selection to multiple objectives and we show that the proposed rules outperform the, in the multi-objective literature, commonly employed depth-first and breadth-first strategies. We also analyze problem specific branching rules. We test the proposed ideas on available benchmark instances for three problem classes with three and four objectives, namely the capacitated facility location problem, the uncapacitated facility location problem, and the knapsack problem. Our enhanced multi-objective branch-and-bound algorithm outperforms the best existing branch-and-bound based approach and is the first to obtain competitive and even slightly better results than a state-of-the-art objective space search method on a subset of the problem classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源