论文标题

一些精美图形变体的自态

Automorphisms of some variants of fine graphs

论文作者

Roux, Frédéric Le, Wolff, Maxime

论文摘要

最近,Bowden,Hensel和Webb定义了表面的细曲线图,扩展了曲线图的概念,以研究同态形态或表面表面的差异组。后来,玛格丽特(Margalit),pham,verberne和Yao证明,对于$ g \ geqslant 2 $的封闭表面,细图的自动形态组自然是对表面同构组的同构。我们将此结果扩展到Torus Case $ G = 1 $;实际上,我们的方法适用于更紧凑的表面,无论是否取向或不可定向。我们还讨论了精美图的平滑版本的情况。

Recently Bowden, Hensel and Webb defined the fine curve graph for surfaces, extending the notion of curve graphs for the study of homeomorphism or diffeomorphism groups of surfaces. Later Long, Margalit, Pham, Verberne and Yao proved that for a closed surface of genus $g\geqslant 2$, the automorphism group of the fine graph is naturally isomorphic to the homeomorphism group of the surface. We extend this result to the torus case $g=1$; in fact our method works for more general surfaces, compact or not, orientable or not. We also discuss the case of a smooth version of the fine graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源