论文标题

使用量子机学习生成分子的近似接地状态

Generating Approximate Ground States of Molecules Using Quantum Machine Learning

论文作者

Ceroni, Jack, Stetina, Torin F., Kieferova, Maria, Marrero, Carlos Ortiz, Arrazola, Juan Miguel, Wiebe, Nathan

论文摘要

分子相对于它们的核位置的势能表面(PE)是理解第一原理化学反应的主要工具。但是,通过在高维PE上进行大量基础状态可能需要大量状态准备的事实使得获得此信息变得复杂。在这项工作中,我们建议使用生成量子机学习模型在PES上的任意点准备量子状态。该模型是使用与不同经典核坐标相关的地面波形组成的量子数据训练的。我们的方法使用经典神经网络将分子的核坐标转换为变异量子电路的量子参数。使用保真度损失函数训练该模型以优化神经网络参数。我们表明,梯度评估是有效的,并且在数值上证明了我们方法在氢链,水和氢化铍的PE上准备波形的能力。在所有情况下,我们都会发现需要少量的训练点才能实现与地面的高度重叠。从理论的角度来看,我们通过证明我们能够使用少量样本在避免的穿越跨越穿越的过程中进一步证明了这些协议的局限性,那么我们将能够违反Grover的下限。此外,我们证明了使用量子Fisher信息参数学习本地最佳神经网络功能所需的量子数据量的下限。这项工作进一步确定了量子化学可能是量子机学习的重要用例。

The potential energy surface (PES) of molecules with respect to their nuclear positions is a primary tool in understanding chemical reactions from first principles. However, obtaining this information is complicated by the fact that sampling a large number of ground states over a high-dimensional PES can require a vast number of state preparations. In this work, we propose using a generative quantum machine learning model to prepare quantum states at arbitrary points on the PES. The model is trained using quantum data consisting of ground-state wavefunctions associated with different classical nuclear coordinates. Our approach uses a classical neural network to convert the nuclear coordinates of a molecule into quantum parameters of a variational quantum circuit. The model is trained using a fidelity loss function to optimize the neural network parameters. We show that gradient evaluation is efficient and numerically demonstrate our method's ability to prepare wavefunctions on the PES of hydrogen chains, water, and beryllium hydride. In all cases, we find that a small number of training points are needed to achieve very high overlap with the groundstates in practice. From a theoretical perspective, we further prove limitations on these protocols by showing that if we were able to learn across an avoided crossing using a small number of samples, then we would be able to violate Grover's lower bound. Additionally, we prove lower bounds on the amount of quantum data needed to learn a locally optimal neural network function using arguments from quantum Fisher information. This work further identifies that quantum chemistry can be an important use case for quantum machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源