论文标题
部分可观测时空混沌系统的无模型预测
Exploring the neighborhood of 1-layer QAOA with Instantaneous Quantum Polynomial circuits
论文作者
论文摘要
我们将1层的QAOA电路嵌入了较大的参数化瞬时量子多项式电路中,以产生改进的变异量子算法,以解决组合优化问题。使用分析表达式来查找最佳参数,从而使我们的协议可靠地抵抗贫瘠的高原和硬件噪声。平均与基态尺度重叠为$ \ Mathcal {o}(2^{ - 0.31 n})$,随机的Sherrington-kirkpatrick(SK)汉密尔顿人的Qubits $ n $数量,最高为29 QUBITS,是1级QAOA的一级改进。此外,我们观察到,在歧管上执行差异时间演变近似于低温伪玻璃体状态。我们的协议在最近发布的Quantinuum H2陷阱量子硬件和模拟器上优于1层QAOA,在312个随机SK实例中,我们获得的平均近似值为$ 0.985 $,为7至32 Qubits,使用4到1208 shots of 1208 shots of Fimate $ 44 \%的$ $ $ 44 \%。
We embed 1-layer QAOA circuits into the larger class of parameterized Instantaneous Quantum Polynomial circuits to produce an improved variational quantum algorithm for solving combinatorial optimization problems. The use of analytic expressions to find optimal parameters classically makes our protocol robust against barren plateaus and hardware noise. The average overlap with the ground state scales as $\mathcal{O}(2^{-0.31 N})$ with the number of qubits $N$ for random Sherrington-Kirkpatrick (SK) Hamiltonians of up to 29 qubits, a polynomial improvement over 1-layer QAOA. Additionally, we observe that performing variational imaginary time evolution on the manifold approximates low-temperature pseudo-Boltzmann states. Our protocol outperforms 1-layer QAOA on the recently released Quantinuum H2 trapped-ion quantum hardware and emulator, where we obtain an average approximation ratio of $0.985$ across 312 random SK instances of 7 to 32 qubits, from which almost $44\%$ are solved optimally using 4 to 1208 shots per instance.