论文标题
二维棋盘板铁磁晶格中的固有局部模式
Intrinsic localized modes in a two-dimensional checkerboard ferromagnetic lattice
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
An analytical work on intrinsic localized modes in a two-dimensional Heisenberg ferromagnet on the checkerboard lattice is presented. Taking advantage of an asymptotic method, the governing lattice dynamical equations are reduced to one (2+1) -dimensional nonlinear Schrödinger. In our work, we obtain two types of nonlinear localized mode solutions, namely, Brillouin zone center modes and Brillouin zone corner modes. The occurrence conditions for these intrinsic localized modes are given in detail. Especially, we find that the competition between the Dzialozinskii-Moriy interaction and the next-nearest neighbor interaction of the checkerboard ferromagnet has an effect on the local structure of the Brillouin zone corner acoustic mode.