论文标题
随机顺序吸附模型中的密度和相关性
Density and correlation in a random sequential adsorption model
论文作者
论文摘要
我们考虑在最接近邻居排除的一维晶格上进行随机的顺序吸附过程。在此模型中,每个站点$ s \ in \ mathbb {z} $开始空,我们将尝试在时间$ t_s $中占用它,其中$(t_s)_ {s \ in \ mathbb {z}} $是独立随机变量的顺序,一组独立的随机变量的顺序在间隔$ [0,1] $上均匀分布。如果两个邻居都空置,该地点将被占用。我们提供了一种方法来计算到时间$ t $的占用站点的密度以及对相关函数。
We consider a random sequential adsorption process on the one-dimensional lattice with nearest-neighbor exclusion. In this model, each site $s \in \mathbb{Z}$ starts empty and we will try to occupy it in time $t_s$, where $(t_s)_{s\in\mathbb{Z}}$ is a sequence of independent random variables uniformly distributed on the interval $[0,1]$. The site will be occupied if both of its neighbors are vacant. We provide a method to calculate the density of occupied sites up to the time $t$, as well as the pair correlation function.