论文标题

零能量自相似的解决方案描述了非线性Schrodinger方程中的奇异性形成n = 3

Zero Energy Self-Similar Solutions Describing Singularity Formation In The Nonlinear Schrodinger Equation In Dimension N=3

论文作者

Troy, William C.

论文摘要

在尺寸n = 3中,立方非线性schrodinger方程的溶液变得奇异,即在空间点它们在有限的时间内吹到无穷大。 1972年,扎哈罗夫(Zakharov)著名地研究了立方非线性Schrodinger方程中有限的时间奇异性形成,是血浆中Langmuir波的空间崩溃的模型,这是宇宙中观察到的最丰富的物质形式。 Zakharov假设(NLS)吹动解决方案是自相似的,并且径向对称,并且可以通过相关的自相似,复杂的普通微分方程(ODE)的溶液来建模奇异性形成。参数a> 0出现在ode中,而因变量q,满足(q(q(0),q'(0))=(q_ {0},0),其中q(0)> 0。将Zakharov模型放在牢固的数学基础上的根本重要步骤是在n = 3时证明,是否存在值a> 0和q_ {0}> 0,以使Q也满足物理上重要的“零能量”的整体约束。自1972年以来,这仍然是一个空旷的问题。在这里,我们通过证明每个a> 0和q(0)> 0来解决此问题,Q满足`零能源的积分约束。

In dimension N=3 the cubic nonlinear Schrodinger equation has solutions which become singular, i.e. at a spatial point they blow up to infinity in finite time. In 1972 Zakharov famously investigated finite time singularity formation in the cubic nonlinear Schrodinger equation as a model for spatial collapse of Langmuir waves in plasma, the most abundant form of observed matter in the universe. Zakharov assumed that (NLS) blow up of solutions is self-similar and radially symmetric, and that singularity formation can be modeled by a solution of an associated self-similar, complex ordinary differential equation~(ODE). A parameter a>0 appears in the ODE, and the dependent variable, Q, satisfies (Q(0),Q'(0))=(Q_{0},0), where Q(0)>0. A fundamentally important step towards putting the Zakharov model on a firm mathematical footing is to prove, when N=3, whether values a>0 and Q_{0}>0 exist such that Q also satisfies the physically important `zero-energy' integral constraint. Since 1972 this has remained an open problem. Here, we resolve this issue by proving that for every a>0 and Q(0)>0, Q satisfies the the `zero-energy' integral constraint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源