论文标题

将RDF-Star转换为属性图:转换方法的初步分析 - 扩展版本

Transforming RDF-star to Property Graphs: A Preliminary Analysis of Transformation Approaches -- extended version

论文作者

Abuoda, Ghadeer, Dell'Aglio, Daniele, Keen, Arthur, Hose, Katja

论文摘要

RDF和属性图模型具有许多相似之处,例如使用节点和边缘等基本图形概念。但是,这样的模型在其建模方法,表现性,序列化和应用的性质上有所不同。 RDF是语义网络上知识图的事实上的标准模型,并得到了丰富的推理和处理生态系统的支持。相比之下,属性图模型在可扩展的图分析任务(例如图形匹配,路径分析和图形遍历)中提供了优势。 RDF-Star扩展了RDF,并允许捕获元数据为一流的公民。为了利用替代模型的优势,文献提出了在属性图和RDF之间转换知识图的不同方法。但是,这些方法中的大多数无法为RDF-Star图提供完整的转换。因此,本文为将RDF-Star图形转换为属性图提供了一步。特别是,我们确定了不同的情况,以评估从RDF-Star到属性图的转换方法。具体而言,我们将两类转换方法分类并根据测试用例进行分析。获得的见解将构成以后建立完整转型方法的基础。

RDF and property graph models have many similarities, such as using basic graph concepts like nodes and edges. However, such models differ in their modeling approach, expressivity, serialization, and the nature of applications. RDF is the de-facto standard model for knowledge graphs on the Semantic Web and supported by a rich ecosystem for inference and processing. The property graph model, in contrast, provides advantages in scalable graph analytical tasks, such as graph matching, path analysis, and graph traversal. RDF-star extends RDF and allows capturing metadata as a first-class citizen. To tap on the advantages of alternative models, the literature proposes different ways of transforming knowledge graphs between property graphs and RDF. However, most of these approaches cannot provide complete transformations for RDF-star graphs. Hence, this paper provides a step towards transforming RDF-star graphs into property graphs. In particular, we identify different cases to evaluate transformation approaches from RDF-star to property graphs. Specifically, we categorize two classes of transformation approaches and analyze them based on the test cases. The obtained insights will form the foundation for building complete transformation approaches in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源