论文标题

使用替代数据和元模型方法对流浊度的短期预测

Short-term prediction of stream turbidity using surrogate data and a meta-model approach

论文作者

Rele, Bhargav, Hogan, Caleb, Kandanaarachchi, Sevvandi, Leigh, Catherine

论文摘要

许多水质监测计划旨在衡量浊度,以帮助指导水道和集水区的有效管理,但是在整个网络中分发浊度传感器通常是成本较高的。为此,我们构建并比较了动态回归(ARIMA),长期短期记忆神经网(LSTM)和广义添加剂模型(GAM)的能力,以预测流浊度向前一步,使用了来自相对低成本的原始传感器和公共可用数据库的代理数据。我们对四种替代协变量(降雨,水位,空气温度和全球太阳能暴露)的迭代试验组合选择了每种类型的最终模型,以最大程度地减少校正后的Akaike信息标准。使用滚动时间窗口的交叉验证表明,仅包括降雨和水位协变量的Arima产生了最准确的预测,其次是GAM,其中包括所有四个协变量。我们构建了一个元模型,该元模型对浊度的时间序列特征进行了训练,以利用每个模型在不同时间点上的优势,并预测每个时间步骤的最佳模型(先验最低的预测误差)。元模型的表现优于所有其他模型,表明该方法可以产生高精度,并且可能是使用直接来自浊度传感器的测量值的可行替代方案,在该测量器中,成本禁止其部署和维护,以及在整个短期内预测涡轮上的时期。我们的发现还表明,温度和光相关的变量,例如水下照明,可能具有成本效益,高频浊度替代浊度的希望,尤其是当与其他协变量(如降雨)结合使用时,通常以粗空分辨率的粗分辨率进行测量。

Many water-quality monitoring programs aim to measure turbidity to help guide effective management of waterways and catchments, yet distributing turbidity sensors throughout networks is typically cost prohibitive. To this end, we built and compared the ability of dynamic regression (ARIMA), long short-term memory neural nets (LSTM), and generalized additive models (GAM) to forecast stream turbidity one step ahead, using surrogate data from relatively low-cost in-situ sensors and publicly available databases. We iteratively trialled combinations of four surrogate covariates (rainfall, water level, air temperature and total global solar exposure) selecting a final model for each type that minimised the corrected Akaike Information Criterion. Cross-validation using a rolling time-window indicated that ARIMA, which included the rainfall and water-level covariates only, produced the most accurate predictions, followed closely by GAM, which included all four covariates. We constructed a meta-model, trained on time-series features of turbidity, to take advantage of the strengths of each model over different time points and predict the best model (that with the lowest forecast error one-step prior) for each time step. The meta-model outperformed all other models, indicating that this methodology can yield high accuracy and may be a viable alternative to using measurements sourced directly from turbidity-sensors where costs prohibit their deployment and maintenance, and when predicting turbidity across the short term. Our findings also indicated that temperature and light-associated variables, for example underwater illuminance, may hold promise as cost-effective, high-frequency surrogates of turbidity, especially when combined with other covariates, like rainfall, that are typically measured at coarse levels of spatial resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源