论文标题

LACV网络:通过本地自适应和全面的Vlad对大规模点云场景的语义分割

LACV-Net: Semantic Segmentation of Large-Scale Point Cloud Scene via Local Adaptive and Comprehensive VLAD

论文作者

Zeng, Ziyin, Xu, Yongyang, Xie, Zhong, Tang, Wei, Wan, Jie, Wu, Weichao

论文摘要

大规模点云语义分割是3D计算机视觉中的重要任务,该任务广泛应用于自动驾驶,机器人技术和虚拟现实。当前的大规模点云语义分割方法通常使用下采样操作来提高计算效率并以多分辨率获取点云。但是,这可能会导致缺少本地信息的问题。同时,网络很难在大规模分布式上下文中捕获全局信息。为了有效地捕获本地和全球信息,我们提出了一个称为LACV-NET的端到端深度神经网络,用于大规模点云语义细分。提出的网络包含三个主要组成部分:1)局部自适应功能增强模块(LAFA),以适应地学习质心和相邻点的相似性,以增强本地环境; 2)综合的VLAD模块(C-VLAD)将本地特征与多层,多尺度和多分辨率融合在一起,以代表全面的全局描述向量; 3)聚集损耗函数,通过约束LAFA模块的自适应重量来有效地优化分割边界。与包括S3DIS,Toronto3D和Sensaturban在内的几个大型基准数据集上的最新网络相比,我们证明了拟议网络的有效性。

Large-scale point cloud semantic segmentation is an important task in 3D computer vision, which is widely applied in autonomous driving, robotics, and virtual reality. Current large-scale point cloud semantic segmentation methods usually use down-sampling operations to improve computation efficiency and acquire point clouds with multi-resolution. However, this may cause the problem of missing local information. Meanwhile, it is difficult for networks to capture global information in large-scale distributed contexts. To capture local and global information effectively, we propose an end-to-end deep neural network called LACV-Net for large-scale point cloud semantic segmentation. The proposed network contains three main components: 1) a local adaptive feature augmentation module (LAFA) to adaptively learn the similarity of centroids and neighboring points to augment the local context; 2) a comprehensive VLAD module (C-VLAD) that fuses local features with multi-layer, multi-scale, and multi-resolution to represent a comprehensive global description vector; and 3) an aggregation loss function to effectively optimize the segmentation boundaries by constraining the adaptive weight from the LAFA module. Compared to state-of-the-art networks on several large-scale benchmark datasets, including S3DIS, Toronto3D, and SensatUrban, we demonstrated the effectiveness of the proposed network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源