论文标题
小型数据解决方案的分散衰减与高阶散射 - 易于临界KDV型方程
Dispersive decay bound of small data solutions to higher order scattering-supercritical KdV-type equations
论文作者
论文摘要
在本文中,我们证明,小的局部数据解决方案对高阶Korteweg-de Vries类型方程式产生,具有散射性的非线性仅在有限的时间内具有线性分散衰减。该证明是通过使用时空共振方法并分析傅立叶侧的振荡积分来完成的。
In this article, we prove that small localized data yield solutions to Higher order Korteweg-de Vries type equation with scattering-supercritical nonlinearity have linear dispersive decay in only a finite length of time. The proof is done by using space-time resonance method and analyzing the oscillatory integrals on the Fourier side.