论文标题
仪表理论和量子厅状态的缺陷
Defect in Gauge Theory and Quantum Hall States
论文作者
论文摘要
我们研究了$ \ Mathcal {n} = 2^*$ $ u(n)$量规理论的表面缺陷,并在两个维度上及其与量子霍尔状态的关系。我们首先证明,缺陷分区函数成为变量的插孔多项式,该变量通过施加希格斯的条件并达到批量解耦极限来描述勃雷位置。进一步调整伴随质量参数,由于插孔多项式的可接受条件,我们可能会获得包括Laughlin,Moore-Read和Read-Rezayi状态在内的各种分数量子大厅状态。
We study the surface defect in $\mathcal{N}=2^*$ $U(N)$ gauge theory in four dimensions and its relation to quantum Hall states in two dimensions. We first prove that the defect partition function becomes the Jack polynomial of the variables describing the brane positions by imposing the Higgsing condition and taking the bulk decoupling limit. Further tuning the adjoint mass parameter, we may obtain various fractional quantum Hall states, including Laughlin, Moore-Read, and Read-Rezayi states, due to the admissible condition of the Jack polynomial.