论文标题
分支的极端分支莱维过程的融合较弱,定期变化的尾巴
Weak convergence of the extremes of branching Lévy processes with regularly varying tails
论文作者
论文摘要
在本文中,我们研究了超临界分支lévy过程的极端趋势,$ \ {\ mathbb {x} _t,t \ ge0 \} $,其空间运动是lévy过程,其定期变化。结果与分支布朗尼运动的情况截然不同。我们证明,在正确重新归一化时,$ \ mathbb {x} _t $会弱收敛。结果,我们获得了$ \ mathbb {x} _t $的订单统计信息的限制定理。
In this paper, we study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.