论文标题
具有非本地相互作用的二阶两种物种系统:存在和较大的阻尼极限
Second order two-species systems with nonlocal interactions: existence and large damping limits
论文作者
论文摘要
我们研究了具有两个物种的二阶系统的数学理论,这是在相互作用的粒子的动力学中产生的,受到线性阻尼,非本地力和外部力的动力学,并导致与线性阻尼的可压缩EULER系统的非本地版本。我们的结果仅限于$ 1 $的空间维度案例,但允许在Wasserstein的概率措施空间中获取初始数据。我们首先考虑平滑的非局部相互作用电位的情况,而不受任何对称条件的影响,并证明存在和唯一性。解决方案的概念依赖于碰撞的粘性条件,本着文献中以前的作品的精神。结果使用了经典希尔伯特空间梯度流理论的概念(参见Brezis [7])和[4]中使用的技巧。然后,我们考虑系统的大型和大型阻尼缩放版本,并证明与相应的一阶系统的解决方案融合。最后,我们考虑了牛顿电势的情况 - 受交叉相互作用电位的对称性以及外部凸电势。在以[4]的精神显示在粘性粒子框架中的存在之后,我们证明了大量融合到这两种密度的Dirac Delta溶液中。所有结果都共享一个共同的技术框架,因为在拉格朗日框架中考虑了解决方案,该框架可以通过$ l^2 $估计的伪内变量估计解决方案的行为,与两种密度相对应。特别是,由于这种技术,大型阻尼结果在初始数据的条件下保持较弱,这不需要精心准备的初始速度。我们通过数值模拟补充结果。
We study the mathematical theory of second order systems with two species, arising in the dynamics of interacting particles subject to linear damping, to nonlocal forces and to external ones, and resulting into a nonlocal version of the compressible Euler system with linear damping. Our results are limited to the $1$ space dimensional case but allow for initial data taken in a Wasserstein space of probability measures. We first consider the case of smooth nonlocal interaction potentials, not subject to any symmetry condition, and prove existence and uniqueness. The concept of solutions relies on a stickiness condition in case of collisions, in the spirit of previous works in the literature. The result uses concepts from classical Hilbert space theory of gradient flows (cf. Brezis [7]) and a trick used in [4]. We then consider a large-time and large-damping scaled version of our system and prove convergence to solutions to the corresponding first order system. Finally, we consider the case of Newtonian potentials -- subject to symmetry of the cross-interaction potentials -- and external convex potentials. After showing existence in the sticky particles framework in the spirit of [4], we prove convergence for large times towards Dirac delta solutions for the two densities. All the results share a common technical framework in that solutions are considered in a Lagrangian framework, which allows to estimate the behavior of solutions via $L^2$ estimates of the pseudo-inverse variables corresponding to the two densities. In particular, due to this technique, the large-damping result holds under a rather weak condition on the initial data, which does not require well-prepared initial velocities. We complement the results with numerical simulations.