论文标题

Sekron:一种支持许多分解结构的分解方法

SeKron: A Decomposition Method Supporting Many Factorization Structures

论文作者

Hameed, Marawan Gamal Abdel, Mosleh, Ali, Tahaei, Marzieh S., Nia, Vahid Partovi

论文摘要

尽管卷积神经网络(CNN)已成为大多数图像处理和计算机视觉应用的事实上的标准,但它们在边缘设备上的部署仍然具有挑战性。张量分解方法提供了一种压缩CNN的方法,以通过在其卷积张量上施加某些分解结构来满足广泛的设备约束。但是,仅限于最先进的分解方法提出的一小部分分解结构可能会导致次优性能。我们提出了一种新型的张量分解方法Sekron,它使用Kronecker产品序列提供了多种分解结构。通过递归发现近似Kronecker因子,我们为每个分解结构达到了最佳分解。我们表明,Sekron是一种灵活的分解,它概括了广泛使用的方法,例如张量训练(TT),张量环(TR),典型的多核(CP)和Tucker分解。至关重要的是,我们得出了所有Sekron结构共享的有效卷积投影算法,从而导致CNN模型无缝压缩。我们在高级和低级计算机视觉任务上验证了Sekron的模型压缩,并发现它表现优于最先进的分解方法。

While convolutional neural networks (CNNs) have become the de facto standard for most image processing and computer vision applications, their deployment on edge devices remains challenging. Tensor decomposition methods provide a means of compressing CNNs to meet the wide range of device constraints by imposing certain factorization structures on their convolution tensors. However, being limited to the small set of factorization structures presented by state-of-the-art decomposition approaches can lead to sub-optimal performance. We propose SeKron, a novel tensor decomposition method that offers a wide variety of factorization structures, using sequences of Kronecker products. By recursively finding approximating Kronecker factors, we arrive at optimal decompositions for each of the factorization structures. We show that SeKron is a flexible decomposition that generalizes widely used methods, such as Tensor-Train (TT), Tensor-Ring (TR), Canonical Polyadic (CP) and Tucker decompositions. Crucially, we derive an efficient convolution projection algorithm shared by all SeKron structures, leading to seamless compression of CNN models. We validate SeKron for model compression on both high-level and low-level computer vision tasks and find that it outperforms state-of-the-art decomposition methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源