论文标题

随机Oracle模型中的量子深度

Quantum Depth in the Random Oracle Model

论文作者

Arora, Atul Singh, Coladangelo, Andrea, Coudron, Matthew, Gheorghiu, Alexandru, Singh, Uttam, Waldner, Hendrik

论文摘要

我们对浅量子电路的计算能力和经典计算的全面表征。具体而言,对于搜索问题类别,我们证明了以下语句相对于随机的Oracle: (a)$ \ mathsf {bpp}^{\ mathsf {qnc}^{\ mathsf {bpp}}}} \ neq \ neq \ mathsf {bqp} $。这驳斥了随机Oracle模型中Jozsa的猜想[QIP 05]。结果,这通过用加密哈希函数替换甲骨文,从而给出了第一个可以在类之间进行的不变分开,从而为亚伦森的量子计算中的十个半grand挑战之一提供了分辨率。 (b)$ \ MATHSF {BPP}^{\ MATHSF {Qnc}} \ nSubSeteq \ Mathsf {Qnc}^{\ MathSf {\ MathSf {Bpp}}} $ and $ \ shsf {qnc} \ Mathsf {Bpp}^{\ Mathsf {qnc}} $。这表明经典计算和浅量子计算之间存在微妙的相互作用。实际上,对于第二个分离,我们确定在某些问题上,在单个浅量子电路中执行适应性测量的能力比在多个浅层量子电路上执行许多浅量子电路的能力更有用。 (c)存在量子深度协议的2件证明。这样的协议允许经典的验证者有效证明摊子必须执行一些最小量子深度的计算。我们可以使用Yamakawa和Zhandry的最新量子构建证明[Stoc 22]来实例化量子深度证明。

We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation. Specifically, for classes of search problems, we show that the following statements hold, relative to a random oracle: (a) $\mathsf{BPP}^{\mathsf{QNC}^{\mathsf{BPP}}} \neq \mathsf{BQP}$. This refutes Jozsa's conjecture [QIP 05] in the random oracle model. As a result, this gives the first instantiatable separation between the classes by replacing the oracle with a cryptographic hash function, yielding a resolution to one of Aaronson's ten semi-grand challenges in quantum computing. (b) $\mathsf{BPP}^{\mathsf{QNC}} \nsubseteq \mathsf{QNC}^{\mathsf{BPP}}$ and $\mathsf{QNC}^{\mathsf{BPP}} \nsubseteq \mathsf{BPP}^{\mathsf{QNC}}$. This shows that there is a subtle interplay between classical computation and shallow quantum computation. In fact, for the second separation, we establish that, for some problems, the ability to perform adaptive measurements in a single shallow quantum circuit, is more useful than the ability to perform polynomially many shallow quantum circuits without adaptive measurements. (c) There exists a 2-message proof of quantum depth protocol. Such a protocol allows a classical verifier to efficiently certify that a prover must be performing a computation of some minimum quantum depth. Our proof of quantum depth can be instantiated using the recent proof of quantumness construction by Yamakawa and Zhandry [STOC 22].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源