论文标题

一般的随机优化框架,用于收敛招标

A General Stochastic Optimization Framework for Convergence Bidding

论文作者

Mones, Letif, Lovett, Sean

论文摘要

融合(虚拟)竞标是两组电力市场的重要组成部分,因为它可以有效地减少日常和实时市场之间的差异。因此,对虚拟参与者的竞标策略进行了广泛的研究,旨在获得最佳的出价来提交日间市场。在本文中,我们介绍了一个基于价格的一般随机优化框架,以获得最佳的收敛竞标曲线。在此框架内,我们开发了一种基于计算的基于线性编程的优化模型,该模型同时产生了出价和数量。我们还表明,通用模型中的不同近似值和简化自然导致了最新的融合竞标方法,例如自我安排和机会主义方法。我们的一般框架还提供了一种简单的方法来比较这些模型的性能,这是通过加利福尼亚(CAISO)市场的数值实验证明的。

Convergence (virtual) bidding is an important part of two-settlement electric power markets as it can effectively reduce discrepancies between the day-ahead and real-time markets. Consequently, there is extensive research into the bidding strategies of virtual participants aiming to obtain optimal bids to submit to the day-ahead market. In this paper, we introduce a price-based general stochastic optimization framework to obtain optimal convergence bid curves. Within this framework, we develop a computationally tractable linear programming-based optimization model, which produces bid prices and volumes simultaneously. We also show that different approximations and simplifications in the general model lead naturally to state-of-the-art convergence bidding approaches, such as self-scheduling and opportunistic approaches. Our general framework also provides a straightforward way to compare the performance of these models, which is demonstrated by numerical experiments on the California (CAISO) market.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源