论文标题

SISO-OFDM通道估计的有效深入展开

Efficient Deep Unfolding for SISO-OFDM Channel Estimation

论文作者

Chatelier, Baptiste, Magoarou, Luc Le, Redieteab, Getachew

论文摘要

在现代通信系统中,渠道状态信息对于实现能力至关重要。然后,对于准确估计通道至关重要。可以使用稀疏恢复技术执行SISO-OFDM通道估计。但是,这种方法依赖于使用物理波传播模型来构建字典,这需要对系统的参数进行完美的了解。在本文中,未展开的神经网络用于减轻该约束。它的架构基于稀疏恢复算法,即使系统的参数不完全了解,也允许SISO-OFDM通道估计。确实,其无监督的在线学习允许学习系统的缺陷,以增强估算性能。在两个方面,提出了相对于艺术的状态提高了所提出的方法的实用性:引入了约束词典,以降低样品的复杂性,并提出了词典中的层次搜索,以降低时间的复杂性。最后,评估了所提出的展开网络的性能,并使用现实的信道数据进行了与几个基线进行比较,显示了该方法的巨大潜力。

In modern communication systems, channel state information is of paramount importance to achieve capacity. It is then crucial to accurately estimate the channel. It is possible to perform SISO-OFDM channel estimation using sparse recovery techniques. However, this approach relies on the use of a physical wave propagation model to build a dictionary, which requires perfect knowledge of the system's parameters. In this paper, an unfolded neural network is used to lighten this constraint. Its architecture, based on a sparse recovery algorithm, allows SISO-OFDM channel estimation even if the system's parameters are not perfectly known. Indeed, its unsupervised online learning allows to learn the system's imperfections in order to enhance the estimation performance. The practicality of the proposed method is improved with respect to the state of the art in two aspects: constrained dictionaries are introduced in order to reduce sample complexity and hierarchical search within dictionaries is proposed in order to reduce time complexity. Finally, the performance of the proposed unfolded network is evaluated and compared to several baselines using realistic channel data, showing the great potential of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源