论文标题
带有有损能力的概括:利用广泛的离线数据学习视觉运动任务
Generalization with Lossy Affordances: Leveraging Broad Offline Data for Learning Visuomotor Tasks
论文作者
论文摘要
事实证明,广泛数据集的利用对于广泛领域的概括至关重要。但是,如何有效利用各种多任务数据来完成新的下游任务仍然是机器人技术的巨大挑战。为了应对这一挑战,我们介绍了一个框架,该框架通过在广泛数据上的离线加强学习获得了目标条件的政策,以实现暂时扩展的任务,并结合在线微调在学习有损表示空间中以子宫为指导的在线微调。当面对一个新的任务目标时,该框架使用负担能力模型来计划一系列有损表示,将原始任务分解为更容易的问题的子目标。从广泛的数据中学到的,有损表示强调了有关州和目标的与任务相关的信息,同时抽象冗余上下文,从而阻碍了概括。因此,它可以实现未见任务的子目标计划,为政策提供了紧凑的输入,并促进了在微调过程中奖励成型。我们表明,我们的框架可以在先前工作的机器人体验的大规模数据集中进行预训练,并且可以有效地进行新颖的任务,这完全来自无需任何手动奖励工程的视觉输入。
The utilization of broad datasets has proven to be crucial for generalization for a wide range of fields. However, how to effectively make use of diverse multi-task data for novel downstream tasks still remains a grand challenge in robotics. To tackle this challenge, we introduce a framework that acquires goal-conditioned policies for unseen temporally extended tasks via offline reinforcement learning on broad data, in combination with online fine-tuning guided by subgoals in learned lossy representation space. When faced with a novel task goal, the framework uses an affordance model to plan a sequence of lossy representations as subgoals that decomposes the original task into easier problems. Learned from the broad data, the lossy representation emphasizes task-relevant information about states and goals while abstracting away redundant contexts that hinder generalization. It thus enables subgoal planning for unseen tasks, provides a compact input to the policy, and facilitates reward shaping during fine-tuning. We show that our framework can be pre-trained on large-scale datasets of robot experiences from prior work and efficiently fine-tuned for novel tasks, entirely from visual inputs without any manual reward engineering.