论文标题

通过对比度学习的封闭式问题生成

Closed-book Question Generation via Contrastive Learning

论文作者

Dong, Xiangjue, Lu, Jiaying, Wang, Jianling, Caverlee, James

论文摘要

问题生成(QG)是许多下游应用程序的基本NLP任务。关于开放式QG的最新研究(在该QG上提供了支持的答案对对模型,都取得了有希望的进展。但是,在缺乏这些支持文件的更实用的封闭式书架下产生自然问题仍然是一个挑战。在这项工作中,我们为此封装设置提出了一个新的QG模型,旨在通过对比度学习和答案重建模块在其参数中更好地了解长效抽象答案的语义。通过实验,我们验证了公共数据集和新的WikICQA数据集上提出的QG模型。经验结果表明,所提出的QG模型在自动评估和人类评估中都优于基准。此外,我们还展示了如何利用所提出的模型来改善现有的提问系统。这些结果进一步表明了我们的QG模型在增强封闭式问题的任务方面的有效性。

Question Generation (QG) is a fundamental NLP task for many downstream applications. Recent studies on open-book QG, where supportive answer-context pairs are provided to models, have achieved promising progress. However, generating natural questions under a more practical closed-book setting that lacks these supporting documents still remains a challenge. In this work, we propose a new QG model for this closed-book setting that is designed to better understand the semantics of long-form abstractive answers and store more information in its parameters through contrastive learning and an answer reconstruction module. Through experiments, we validate the proposed QG model on both public datasets and a new WikiCQA dataset. Empirical results show that the proposed QG model outperforms baselines in both automatic evaluation and human evaluation. In addition, we show how to leverage the proposed model to improve existing question-answering systems. These results further indicate the effectiveness of our QG model for enhancing closed-book question-answering tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源