论文标题
潮汐:积极学习的学习培训动力
TiDAL: Learning Training Dynamics for Active Learning
论文作者
论文摘要
主动学习(AL)旨在从未标记的数据库中选择最有用的数据样本,并注释它们以在有限的预算下扩展标记的数据集。特别是,基于不确定性的方法选择最不确定的样本,这些样本可有效改善模型性能。但是,AL文献经常忽略训练动力学(TD),该动力学定义为通过随机梯度下降在优化过程中不断变化的模型行为,尽管其他文献已经经验表明,TD为测量样品不确定性提供了重要的线索。在本文中,我们提出了一种新颖的AL方法,即用于主动学习的训练动力学(TIDAL),该动态利用TD来量化未标记数据的不确定性。由于跟踪所有大尺度未标记数据的TD是不切实际的,因此潮汐利用了一个额外的预测模块,该模块学习了标记数据的TD。为了进一步证明潮汐的设计是合理的,我们提供了理论和经验证据,以争辩利用TD对Al的有用性。实验结果表明,与最先进的方法相比,我们的潮汐在平衡和不平衡基准数据集上取得更好或可比的性能,在模型培训后仅使用静态信息估算数据不确定性。
Active learning (AL) aims to select the most useful data samples from an unlabeled data pool and annotate them to expand the labeled dataset under a limited budget. Especially, uncertainty-based methods choose the most uncertain samples, which are known to be effective in improving model performance. However, AL literature often overlooks training dynamics (TD), defined as the ever-changing model behavior during optimization via stochastic gradient descent, even though other areas of literature have empirically shown that TD provides important clues for measuring the sample uncertainty. In this paper, we propose a novel AL method, Training Dynamics for Active Learning (TiDAL), which leverages the TD to quantify uncertainties of unlabeled data. Since tracking the TD of all the large-scale unlabeled data is impractical, TiDAL utilizes an additional prediction module that learns the TD of labeled data. To further justify the design of TiDAL, we provide theoretical and empirical evidence to argue the usefulness of leveraging TD for AL. Experimental results show that our TiDAL achieves better or comparable performance on both balanced and imbalanced benchmark datasets compared to state-of-the-art AL methods, which estimate data uncertainty using only static information after model training.