论文标题
轨道膨胀变异量子本素:具有浅量子电路的分子有效模拟
Orbital Expansion Variational Quantum Eigensolver: Enabling Efficient Simulation of Molecules with Shallow Quantum Circuit
论文作者
论文摘要
在嘈杂的中间尺度 - 量词时代,变异量子本质量(VQE)是研究量子化学,材料科学和凝结物理学中基态特性的有前途的方法。但是,一般的量子本素层缺乏系统的可改善性,而实现严格的合并通常很难实践,尤其是在解决强相关系统时。在这里,我们提出了一个轨道膨胀VQE〜(OE-VQE)框架来构建有效的收敛路径。该路径从高度相关的紧凑型活跃空间开始,并迅速扩展并收敛到基态,从而可以使用较浅的量子电路模拟地面状态。我们将OE-VQE基于一系列典型分子,包括h $ _ {6} $ - 链,h $ _ {10} $ - ring和n $ _2 $,仿真结果表明,提出的收敛路径大大提高了一般量子本量的量子性能的性能。
In the noisy-intermediate-scale-quantum era, Variational Quantum Eigensolver (VQE) is a promising method to study ground state properties in quantum chemistry, materials science, and condensed physics. However, general quantum eigensolvers are lack of systematical improvability, and achieve rigorous convergence is generally hard in practice, especially in solving strong-correlated systems. Here, we propose an Orbital Expansion VQE~(OE-VQE) framework to construct an efficient convergence path. The path starts from a highly correlated compact active space and rapidly expands and converges to the ground state, enabling simulating ground states with much shallower quantum circuits. We benchmark the OE-VQE on a series of typical molecules including H$_{6}$-chain, H$_{10}$-ring and N$_2$, and the simulation results show that proposed convergence paths dramatically enhance the performance of general quantum eigensolvers.