论文标题
NOMORELIZER:从样本的角度构建无标准器模型
NoMorelization: Building Normalizer-Free Models from a Sample's Perspective
论文作者
论文摘要
标准化层已成为深度学习模型的基本配置之一,但它仍然遭受计算效率低下,可解释性困难和低通用性的困扰。从样本的角度了解最新的归一化研究和无标准化研究的工作后,我们揭示了问题在于采样噪声和不适当的先前假设。在本文中,我们提出了一种简单有效的替代品来进行归一化,这称为“变态化”。 Nomorelization由两个可训练的标量和一个以零中心的噪声注射器组成。实验结果表明,Nomorelization是深度学习的一般组成部分,适用于不同的模型范式(例如,基于卷积的基于卷积的模型和基于注意力的模型)来处理不同的任务(例如,歧视性和生成任务)。与现有的主流规范式(例如BN,LN和IN)和最先进的标准化器方法相比,Nomorialize显示出最佳的速度准确性权衡。
The normalizing layer has become one of the basic configurations of deep learning models, but it still suffers from computational inefficiency, interpretability difficulties, and low generality. After gaining a deeper understanding of the recent normalization and normalizer-free research works from a sample's perspective, we reveal the fact that the problem lies in the sampling noise and the inappropriate prior assumption. In this paper, we propose a simple and effective alternative to normalization, which is called "NoMorelization". NoMorelization is composed of two trainable scalars and a zero-centered noise injector. Experimental results demonstrate that NoMorelization is a general component for deep learning and is suitable for different model paradigms (e.g., convolution-based and attention-based models) to tackle different tasks (e.g., discriminative and generative tasks). Compared with existing mainstream normalizers (e.g., BN, LN, and IN) and state-of-the-art normalizer-free methods, NoMorelization shows the best speed-accuracy trade-off.