论文标题

在非线性PA失真下,对节能大规模MIMO系统的无线性PA失真中的线性预系会进行自我监督的学习

Self-Supervised Learning of Linear Precoders under Non-Linear PA Distortion for Energy-Efficient Massive MIMO Systems

论文作者

Feys, Thomas, Mestre, Xavier, Rottenberg, François

论文摘要

大量多重输入多重输出(MIMO)系统通常是在线性功率放大器(PAS)的假设下设计的。但是,在接近其饱和点时,PAS通常是最节能的,在该点它们会引起非线性失真。此外,当使用常规的预码器时,这种失真在用户位置相干结合,从而限制了性能。因此,在设计能节能的大型MIMO系统时,必须对此失真进行管理。在这项工作中,我们建议使用神经网络(NN)学习通道矩阵和预编码矩阵之间的映射,该矩阵在存在这种非线性失真的情况下最大化了总和率。这是针对单个和多用户案例的三阶多项式PA模型完成的。通过学习此映射,与常规的预编码器相比,在饱和度方案中,与传统的预编码器(DPD)相比,能源效率的显着提高可以实现。

Massive multiple input multiple output (MIMO) systems are typically designed under the assumption of linear power amplifiers (PAs). However, PAs are typically most energy-efficient when operating close to their saturation point, where they cause non-linear distortion. Moreover, when using conventional precoders, this distortion coherently combines at the user locations, limiting performance. As such, when designing an energy-efficient massive MIMO system, this distortion has to be managed. In this work, we propose the use of a neural network (NN) to learn the mapping between the channel matrix and the precoding matrix, which maximizes the sum rate in the presence of this non-linear distortion. This is done for a third-order polynomial PA model for both the single and multi-user case. By learning this mapping a significant increase in energy efficiency is achieved as compared to conventional precoders and even as compared to perfect digital pre-distortion (DPD), in the saturation regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源