论文标题

统计稳定流量的平均分解运算符

Mean resolvent operator of statistically steady flows

论文作者

Leclercq, Colin, Sipp, Denis

论文摘要

本文介绍了一个与统计稳定状态下流量的输入输出分析相关的新操作员,远离稳定的基本流量:平均分辨率$ \ MATHBF {R} _0 $。它被定义为操作员在频域中预测对时间变化的基本流的平均线性响应。因此,它提供了输入输出动力学的统计上最佳的线性时变近似,例如在流控制应用中可能有用。理论是针对周期案例开发的。显示操作员的杆子与系统的浮标指数相对应,包括纯粹的假想极杆的基本频率。通常,从数据评估平均传输函数需要平均对同一输入的许多实现的响应。但是,在谐波强迫的特定情况下,我们表明可以在不平均的情况下确定平均传递函数:在文献中称为“动态线性”的观察值(Dahan等,2012)。对于不稳定极限的不可压缩流,即,与平均雅各布式的放大相比,在不稳定的部分进行扰动时,平均分辨率$ \ mathbf {r} _0 $是众所周知的均值解决方案驾驶员,这是众所周知的。尽管本文中提出的理论仅扩展到Quasiperiodic Flow,但$ \ Mathbf {r} _0 $的定义对于具有连续或混合光谱(包括湍流)的流量对于流量仍然有意义。数值证据支持了两个分解的算子在Quasiperiodic,混乱和随机二维不可压缩流中的密切联系。

This paper introduces a new operator relevant to input-output analysis of flows in a statistically steady regime far from the steady base flow: the mean resolvent $\mathbf{R}_0$. It is defined as the operator predicting, in the frequency domain, the mean linear response to forcing of the time-varying base flow. As such, it provides the statistically optimal linear time-invariant approximation of the input-output dynamics, which may be useful, for instance, in flow control applications. Theory is developed for the periodic case. The poles of the operator are shown to correspond to the Floquet exponents of the system, including purely imaginary poles at multiples of the fundamental frequency. In general, evaluating mean transfer functions from data requires averaging the response to many realizations of the same input. However, in the specific case of harmonic forcings, we show that the mean transfer functions may be identified without averaging: an observation referred to as `dynamic linearity' in the literature (Dahan et al., 2012). For incompressible flows in the weakly unsteady limit, i.e. when amplification of perturbations by the unsteady part of the periodic Jacobian is small compared to amplification by the mean Jacobian, the mean resolvent $\mathbf{R}_0$ is well-approximated by the well-known resolvent operator about the mean-flow. Although the theory presented in this paper only extends to quasiperiodic flows, the definition of $\mathbf{R}_0$ remains meaningful for flows with continuous or mixed spectra, including turbulent flows. Numerical evidence supports the close connection between the two resolvent operators in quasiperiodic, chaotic and stochastic two-dimensional incompressible flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源