论文标题

Corl:面向研究的深层离线增强学习库

CORL: Research-oriented Deep Offline Reinforcement Learning Library

论文作者

Tarasov, Denis, Nikulin, Alexander, Akimov, Dmitry, Kurenkov, Vladislav, Kolesnikov, Sergey

论文摘要

CORL是一个开源库,提供了深层离线和离线 - 到对线增强学习算法的彻底基准测试的单文件实现。它强调了一种简单的代码库和现代分析跟踪工具的简单发展体验。在CORL中,我们将实现方法隔离到单独的单个文件中,从而使与性能相关的细节易于识别。此外,还可以使用实验跟踪功能,以帮助对数量指标,超参数,依赖项等。最后,我们通过对常见的D4RL数据集进行基准测试提供透明的结果来源来确保实现的可靠性,从而可以将其重复使用,以用于强大的评估工具,例如绩效配置文件,改进的可能性或预期的在线绩效。

CORL is an open-source library that provides thoroughly benchmarked single-file implementations of both deep offline and offline-to-online reinforcement learning algorithms. It emphasizes a simple developing experience with a straightforward codebase and a modern analysis tracking tool. In CORL, we isolate methods implementation into separate single files, making performance-relevant details easier to recognize. Additionally, an experiment tracking feature is available to help log metrics, hyperparameters, dependencies, and more to the cloud. Finally, we have ensured the reliability of the implementations by benchmarking commonly employed D4RL datasets providing a transparent source of results that can be reused for robust evaluation tools such as performance profiles, probability of improvement, or expected online performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源